Search results for: language learning
6534 The Feminine Disruption of Speech and Refounding of Discourse: Kristeva’s Semiotic Chora and Psychoanalysis
Authors: Kevin Klein-Cardeña
Abstract:
For Julia Kristeva, contra Lacan, the instinctive body refuses to go away within discourse. Neither is the pre-Oedipal stage of maternal fusion vanquished by the emergence of language and with it, the law of the father. On the contrary, Kristeva argues, the pre-symbolic ambivalently haunts the society of speech, simultaneously animating and threatening the very foundations of signification. Kristeva invents the term “the semiotic” to refer to this continual breaking-through of the material unconscious onto the scene of meaning. This presentation examines Kristeva’s semiotic as a theoretical gesture that itself is a disruption of discourse, re-presenting the ‘return of the repressed’ body in theory—-the breaking-through of the unconscious onto the science of meaning. Faced with linguistic theories concerned with abstract sign-systems as well as Lacanian doctrine privileging the linguistic sign unequivocally over the bodily drive, Kristeva’s theoretical corpus issues the message of a psychic remainder that disrupts with a view toward replenishing theoretical accounts of language and sense. Reviewing Semiotic challenge across these two levels (the sense and science of language), the presentation suggests that Kristeva’s offerings constitute a coherent gestalt, providing an account of the feminist nature of her dual intervention. In contrast to other feminist critiques, Kristeva’s gesture hinges on its restoration of the maternal contribution to subjectivity. Against the backdrop of ‘phallogocentric’ and ‘necrophilic’ theories that strip language of a subject and strip the subject of a body, Kristeva recasts linguistic study through a metaphor of life and birthing. Yet the semiotic fragments the subject it produces, dialoguing with an unconscious curtailed by but also exceeding the symbolic order of signification. Linguistics, too, becomes fragmented in the same measure as it is more meaningfully renewed by its confrontation with the semiotic body. It is Kristeva’s own body that issues this challenge, on both sides of the boundary between the theory and the theorized. The Semiotic becomes comprehensible as a project unified by its concern to disrupt and rehabilitate language, the subject, and the scholarly discourses that treat them.Keywords: Julia kristeva, the Semiotic, french feminism, psychoanalysic theory, linguistics
Procedia PDF Downloads 786533 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education
Authors: Raluca Ionela Maxim
Abstract:
Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.Keywords: design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models
Procedia PDF Downloads 1396532 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1196531 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 2796530 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach
Authors: K. V. F. Fatokun, P. A. Eniayeju
Abstract:
This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest
Procedia PDF Downloads 3326529 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 1126528 Developing an Innovative General Foundation Programme (GFP) and an IELTS Centre in a New Military College
Authors: Jessica Peart, Sarim Al Zubaidy
Abstract:
This paper examines the main dialogic and reformative aspects that have constituted the developing implementation of an English language module in a common pre-sessional program in Oman, the General Foundation Program (GFP), at the new Military Technological College (MTC), in Oman’s capital, muscat. The MTC is the first of its kind in the country to merge military with academic training and has been running programs since September 2013 over five trimesters to date, receiving external validation and accreditation from the University of Portsmouth (UoP), UK. From this starting point, We will provide context on the parameters that necessitated delivery of this common but specially tailored pre-sessional program at the MTC and outline in detail how the English module with integrated key study skills and personal tutoring support was initially conceived before operations commenced and cooperation between all stakeholders took practical shape. This enquiry traces how stakeholders from students to faculty, college boards and collaborative university partners have considered and redefined the in part static and dynamic boundaries of their larger and smaller scale stakes. With regard to the widely held recognition that pre-sessional students require training in transferable study skills in order to succeed at university, we will chart the subsequent and ongoing adjustments made to the generic, pastoral and integrated elements of that program. Driving this concerted effort has been at base the need for a GFP concerned with three criteria for incoming MTC students cadets, namely to develop candidate’s rounded capacity for intellectual, technical and physical skill as both students and cadets, to generate linguistic proficiency and discerning use of appropriate language registers and to allow personal and collective time for adjustment to a multilayered, brand new environment, while also working within a regulated timeline for academic progression to the MTC diploma or degree levels. The English Department teaching staff’s facilitation of the initial program’s methodologies and timeframe for the GFP English module has garnered a keen and diverse sense of the holistic student cadet experience, which a range of alterations to the program demonstrate. These include alterations to the class types and overall program duration as well as greater multiplicity of exposure within learning environments. In surveying the impact of these composite maneuvers and challenges within a proactive and evolving context of teaching and learning, it is finally demonstrated how student cadet levels of productivity and self-reliance on the one hand and retention issues on the other are being gainfully steered towards progression within a framework for inclusive reciprocal dialogue, gathering thereby civilian and military backgrounds toward uniquely united ends.Keywords: English module transferable skills, faculty dialogue, governance structure, overarching regulatory agencies
Procedia PDF Downloads 2786527 Investigating Ways in Which Incorporating Green Areas in Designing Classrooms and Play Areas Fosters Children Cognitive Development, Learning, and Creativity
Authors: Seyedomid Fatemi
Abstract:
The indoor and outdoor climate of an architectural or closed space determines opportunities that children have for different types of learning. Bringing green areas into the classroom might give freedom to teachers to incorporate learning activities that activate different senses such as sight or touch. Green spaces and design in the classroom can help children practice different concepts they learn in subjects such as science. The practical aspect of having green areas or designs in the classroom can also facilitate high-level and long-lasting learning. Green spaces, particularly in the play areas or around schools, improve creativity and give experimental opportunities for children and enjoyment the beautiful and green nature, which impacts cognitive development in the in long-term. Furthermore, previous studies indicated that green settings generally may help attention concentration and self-discipline. Bringing green areas into classrooms or outdoors for children can look different depending on resources. It could look like green spaces, indoor or outdoor, or have representation or samples of green space. From the design perspective, bringing green areas into school might mean incorporating these spaces when designing different areas in school or attending to colors and shapes to reflect green spaces.Keywords: green areas, cognitive development, children cognitive, class design
Procedia PDF Downloads 196526 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning
Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya
Abstract:
Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment
Procedia PDF Downloads 4456525 K-12 Students’ Digital Life: Activities and Attitudes
Authors: Meital Amzalag, Sharon Hardof-Jaffe
Abstract:
In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.Keywords: technology and learning, K-12, digital life, gender differences
Procedia PDF Downloads 1396524 Mental Contrasting with Implementation Intentions: A Metacognitive Strategy on Educational Context
Authors: Paula Paulino, Alzira Matias, Ana Margarida Veiga Simão
Abstract:
Self-regulated learning (SRL) directs students in analyzing proposed tasks, setting goals and designing plans to achieve those goals. The literature has suggested a metacognitive strategy for goal attainment known as Mental Contrasting with Implementation Intentions (MCII). This strategy involves Mental Contrasting (MC), in which a significant goal and an obstacle are identified, and Implementation Intentions (II), in which an "if... then…" plan is conceived and operationalized to overcome that obstacle. The present study proposes to assess the MCII process and whether it promotes students’ commitment towards learning goals during school tasks in sciences subjects. In this investigation, we intended to study the MCII strategy in a systemic context of the classroom. Fifty-six students from middle school and secondary education attending a public school in Lisbon (Portugal) participated in the study. The MCII strategy was explicitly taught in a procedure that included metacognitive modeling, guided practice and autonomous practice of strategy. A mental contrast between a goal they wanted to achieve and a possible obstacle to achieving that desire was instructed, and then the formulation of plans in order to overcome the obstacle identified previously. The preliminary results suggest that the MCII metacognitive strategy, applied to the school context, leads to more sophisticated reflections, the promotion of learning goals and the elaboration of more complex and specific self-regulated plans. Further, students achieve better results on school tests and worksheets after strategy practice. This study presents important implications since the MCII has been related to improved outcomes and increased attendance. Additionally, MCII seems to be an innovative process that captures students’ efforts to learn and enhances self-efficacy beliefs during learning tasks.Keywords: implementation intentions, learning goals, mental contrasting, metacognitive strategy, self-regulated learning
Procedia PDF Downloads 2496523 Effect of Timing and Contributing Factors for Early Language Intervention in Toddlers with Repaired Cleft Lip and Palate
Authors: Pushpavathi M., Kavya V., Akshatha V.
Abstract:
Introduction: Cleft lip and palate (CLP) is a congenital condition which hinders effectual communication due to associated speech and language difficulties. Expressive language delay (ELD) is a feature seen in this population which is influenced by factors such as type and severity of CLP, age at surgical and linguistic intervention and also the type and intensity of speech and language therapy (SLT). Since CLP is the most common congenital abnormality seen in Indian children, early intervention is a necessity which plays a critical role in enhancing their speech and language skills. The interaction between the timing of intervention and factors which contribute to effective intervention by caregivers is an area which needs to be explored. Objectives: The present study attempts to determine the effect of timing of intervention on the contributing maternal factors for effective linguistic intervention in toddlers with repaired CLP with respect to the awareness, home training patterns, speech and non-speech behaviors of the mothers. Participants: Thirty six toddlers in the age range of 1 to 4 years diagnosed as ELD secondary to repaired CLP, along with their mothers served as participants. Group I (Early Intervention Group, EIG) included 19 mother-child pairs who came to seek SLT soon after corrective surgery and group II (Delayed Intervention Group, DIG) included 16 mother-child pairs who received SLT after the age of 3 years. Further, the groups were divided into group A, and group B. Group ‘A’ received SLT for 60 sessions by Speech Language Pathologist (SLP), while Group B received SLT for 30 sessions by SLP and 30 sessions only by mother without supervision of SLP. Method: The mothers were enrolled for the Early Language Intervention Program and following this, their awareness about CLP was assessed through the Parental awareness questionnaire. The quality of home training was assessed through Mohite’s Inventory. Subsequently, the speech and non-speech behaviors of the mothers were assessed using a Mother’s behavioral checklist. Detailed counseling and orientation was done to the mothers, and SLT was initiated for toddlers. After 60 sessions of intensive SLT, the questionnaire and checklists were re-administered to find out the changes in scores between the pre- and posttest measurements. Results: The scores obtained under different domains in the awareness questionnaire, Mohite’s inventory and Mothers behavior checklist were tabulated and subjected to statistical analysis. Since the data did not follow normal distribution (i.e. p > 0.05), Mann-Whitney U test was conducted which revealed that there was no significant difference between groups I and II as well as groups A and B. Further, Wilcoxon Signed Rank test revealed that mothers had better awareness regarding issues related to CLP and improved home-training abilities post-orientation (p ≤ 0.05). A statistically significant difference was also noted for speech and non-speech behaviors of the mothers (p ≤ 0.05). Conclusions: Extensive orientation and counseling helped mothers of both EI and DI groups to improve their knowledge about CLP. Intensive SLT using focused stimulation and a parent-implemented approach enabled them to carry out the intervention in an effectual manner.Keywords: awareness, cleft lip and palate, early language intervention program, home training, orientation, timing of intervention
Procedia PDF Downloads 1266522 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator
Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong
Abstract:
Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce
Procedia PDF Downloads 366521 Deictic Expressions in Selected Football Commentaries
Authors: Vera Ofori Akomah
Abstract:
There is no society without language. In football, language serves as a tool for communication. The football language and meaning of activities are largely revealed through the utterances of football commentators. The linguistic subfield of pragmatics is related to the study of meaning. Pragmatics shows that the interpretation of utterances not only depends on linguistic knowledge but also depends on knowledge about the context of the utterance, knowledge about the status of those involved such as the intent of the speaker, the place, and time of the utterance. Pragmatics analysis comes in several forms and one of such is Deixis. In football commentating, commentators often use deitic expressions in building utterances. The researcher intends to analyse deixis contained in three selected football commentaries through the use of Levinson’s deixis theory. This research is a qualitative study with content analysis as its method. This is because this study focuses on deitic expressions in football commentaries. The data of this study are utterances from English commentaries from 2016 El Classico match between Barcelona and Real Madrid, 2018 FIFA World Cup: Portugal vs Spain and 2022 FIFA World Cup Qualifier: Ghana v Nigeria. The result of the study reveals that there are five kinds of deixis which are person deixis (divided into three: the first person, the second person and the third person), place deixis, time deixis, discourse deixis and social deixis.Keywords: pragmatics analysis, football commentary, deixis, types of deixis
Procedia PDF Downloads 316520 Strategies for Enhancing Academic Honesty as an Ethical Concern in Electronic Learning (E-learning) among University Students: A Philosophical Perspective
Authors: Ekeh Greg
Abstract:
Learning has been part of human existence from time immemorial. The aim of every learning is to know the truth. In education, it is desirable that true knowledge is imparted and imbibed. For this to be achieved, there is need for honesty, in this context, academic honesty among students, especially in e-learning. This is an ethical issue since honesty bothers on human conduct. However, research findings have shown that academic honesty has remained a big challenge to online learners, especially among the university students. This is worrisome since the university education is the final education system and a gateway to life in the wider society after schooling. If they are practicing honesty in their academic life, it is likely that they will practice honesty in the in the society, thereby bringing positive contributions to the society wherever they find themselves. With this in mind, the significance of this study becomes obvious. On grounds of this significance, this paper focuses on strategies that are adjudged certain to enhance the practice of honesty in e-learning so as to enable learners to be well equipped to contribute to the society through honest ways. The aim of the paper is to contribute to the efforts of instilling the consciousness and practice of honesty in the minds and hearts of learners. This will, in turn, promote effective teaching and learning, academic high standard, competence and self-confidence in university education. Philosophical methods of conceptual analysis, clarification, description and prescription are adopted for the study. Philosophical perspective is chosen so as to ground the paper on the basis of rationality rather than emotional sentiments and biases emanating from cultural, religious and ethnic differences and orientations. Such sentiments and biases can becloud objective reasoning and sound judgment. A review of related literature is also carried out. The findings show that academic honesty in e-learning is a cherished value, but it is bedeviled by some challenges, such as care-free attitude on the part of students and absence of monitoring. The findings also show that despite the challenges facing academic honesty, strategies such as self-discipline, determination, hard work, imbibing ethical and philosophical principles, among others, can certainly enhance the practice of honesty in e-learning among university students. The paper, therefore, concludes that these constitute strategies for enhancing academic honesty among students. Consequently, it is suggested that instructors, school counsellors and other stakeholders should endeavour to see that students are helped to imbibe these strategies and put them into practice. Students themselves are enjoined to cherish honesty in their academic pursuit and avoid short-cuts. Short-cuts can only lead to mediocrity and incompetence on the part of the learners, which may have long adverse consequences, both on themselves and others.Keywords: academic, ethical, philosophical, strategies
Procedia PDF Downloads 846519 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 256518 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 2646517 Haptic Cycle: Designing Enhanced Museum Learning Activities
Authors: Menelaos N. Katsantonis, Athanasios Manikas, Alexandros Chatzis, Stavros Doropoulos, Anastasios Avramis, Ioannis Mavridis
Abstract:
Museums enhance their potential by adopting new technologies and techniques to appeal to more visitors and engage them in creative and joyful activities. In this study, the Haptic Cycle is presented, a cycle of museum activities proposed for the development of museum learning approaches with optimized effectiveness and engagement. Haptic Cycle envisages the improvement of the museum’s services by offering a wide range of activities. Haptic Cycle activities make the museum’s exhibitions more approachable by bringing them closer to the visitors. Visitors can interact with the museum’s artifacts and explore them haptically and sonically. Haptic Cycle proposes constructivist learning activities in which visitors actively construct their knowledge by exploring the artifacts, experimenting with them and realizing their importance. Based on the Haptic Cycle, we developed the HapticSOUND system, an innovative virtual reality system that includes an advanced user interface that employs gesture-based technology. HapticSOUND’s interface utilizes the leap motion gesture recognition controller and a 3D-printed traditional Cretan lute, utilized by visitors to perform various activities such as exploring the lute and playing notes and songs.Keywords: haptic cycle, HapticSOUND, museum learning, gesture-based, leap motion
Procedia PDF Downloads 946516 Critical Reflection in Teaching and Learning Mathematics towards Perspective Transformation: Practices in Public and Private Schools
Authors: Arturo Tobias Calizon Jr.
Abstract:
The study investigated the practices in critical reflection being employed in teaching and learning mathematics in public and private schools for students to achieve perspective transformation in psychological, convictional and behavioral dimensions. There were 1,969 senior high school and college student-respondents selected at random from 33 schools. Process reflection is most commonly practiced in both public and private schools. Convictional dimension of perspective transformation is most frequently achieved. There is no significant difference in practices of process reflection between senior high school and college students. However, there is a significant difference in perspective transformation in behavioral dimension achieved by students from public and private schools. Also, there are significant differences in psychological, convictional and behavioral dimensions of perspective transformation achieved by senior high school and college students. There is a high and significant relationship between critical reflection practices and perspective transformation of students. The researcher concludes that there are teaching strategies that facilitate critical thinking, and there are learning activities that alter perspective of students about mathematics as an abstract field. The researcher further concludes that consistent use of appropriate teaching and learning activities could bring about perspective transformation in students with success.Keywords: critical reflection, perspective transformation, process reflection, convictional dimension, teaching and learning mathematics
Procedia PDF Downloads 1626515 Trust and Conflict Resolution: Relationship Building for Learning
Authors: Jeff Dickie
Abstract:
This research paper combined grounded coding and research questions with the objective to investigate conflict resolution in the classroom. The students’ answers concerning teaching were coded according to phrasal meanings which revealed concepts. These concept codes then became input data into theoretical frameworks. The investigation indicated two conflicts: whether the information was valid and whether to make the study effort which was discussed as perceptions of teacher’s competence in helping to learn. The relevant factors in helping to learn were predominately emotional. These factors were important in the negotiation process to develop relationships. Information validity seemed to be the motivator to begin and participate effectively with the learning process. In effect, confidence in the learning negotiation process with the focus towards relationship building with the subject matter seemed to be the motivator to make the study effort.Keywords: coding, confidence, competence, conflict resolution, risk, trust, relationship building
Procedia PDF Downloads 4356514 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators
Authors: Gabrielle Brand, Christopher Etherton-Beer
Abstract:
The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.Keywords: narrative, photo-elicitation, reflective learning, qualitative research
Procedia PDF Downloads 2896513 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study
Authors: Catherine Mary Abou-Zaid
Abstract:
This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education
Procedia PDF Downloads 3206512 Ukrainians Professors in a Luso-Hispanophone Brazilian Border Region: a Case-Study on the Management of Multilingualism in Higher Education
Authors: Isis Ribeiro Berger
Abstract:
In view of recent war conflicts between Russia and Ukraine, the government of Paraná State, in Brazil, started a program to host Ukrainian scientists in state universities in 2022. The initiative aimed at integrating these scientists into the Brazilian academic community, strengthening the role of universities in producing science and innovation even in times of war, as well as fostering Higher Education internationalization. Paraná state was a pioneer in this initiative due to the fact it has been home to the largest contingent of immigrants and descendants of Ukrainians in Brazil because of migratory processes that began at the end of the 19th century. One of the universities receiving Ukrainian scientists is in Foz do Iguaçu, a city that borders Argentina and Paraguay. It is a multilingual environment, whose majority languages are Portuguese (the official language of Brazil), Spanish (the official language of both Argentina and Paraguay), as well as Guarani (the co-official indigenous language of Paraguay). It is in such a sociolinguistic environment that two Ukrainian professors began their activities within the scope of an Interdisciplinary Postgraduate Program (master’s and doctorate degree). This case study, whose theme is the management of multilingualism, was developed within the scope of Language Policy. It aimed at identifying the attitudes of both Ukrainian professors and postgraduate students towards multilingualism in this context, given the plural linguistic repertoire of the academic community, as well as identifying the language management strategies for the construction of knowledge implemented by the program and in the classroom by these participants. Therefore, the study was conducted under a qualitative approach, for which surveys and interviews were adopted as part of its methodological procedures. Data revealed the presence of different languages in the classroom (Portuguese, Spanish, English and Ukrainian), which made pedagogical practices challenging for both professors and students, whose levels of knowledge in the different languages varied significantly. The results indicate that multilingualism was the norm as the means of instruction adopted in this context, in which bilingual Portuguese-English-Ukrainian instruction was used by the professors in their lectures. Although English has been privileged for the internationalization of Higher Education in various contexts, it was not used as an exclusive means of instruction in this case, mostly because it is a predominantly Portuguese-Spanish-speaking environment. In addition, the professors counted on the mediation of an interpreter hired by the program since not every student had sufficient knowledge of English as part of their repertoires. The findings also suggest Portuguese is the language that most of the participants of this study prefer, both because it is the mother tongue of majority, and because it is the official language of the host country to the professors, who have sought to integrate to the local culture and community. This research is inserted in the Axis: Multilingualism and Education, of the UNESCO Chair on Language Policies for Multilingualism to which this study is related.Keywords: attitudes, border region, multilingualism management, Ukrainian professors
Procedia PDF Downloads 736511 Freedom and the Value of Games: How to Overcome the Challenges in the Gamification of Necessary Learning Tasks
Authors: Jonathan May
Abstract:
This paper argues that the value of games relates to the sensation of freedom they create, and this in turn results from their nature as voluntary, non-necessary tasks. Attempts to gamify necessary learning tasks are therefore challenged to create this sensation of freedom and so they often fail to create the pleasure and value found in traditional games. It then demonstrates a route to creating this sensation of freedom through the maximization of varied and creative solutions to such problems.Keywords: gamification, games, philosophy of games, freedom, voluntary action, necessity, motivation, value of games
Procedia PDF Downloads 1846510 Influence of Social Media on Perceived Learning Outcome of Agricultural Students in Tertiary Institutions in Oyo State, Nigeria
Authors: Adedoyin Opeyemi Osokoya
Abstract:
The study assesses the influence of social media on perceived learning outcome of agricultural science students in tertiary institutions in Oyo state, Nigeria. The four-stage sampling procedure was used to select participants. All students in the seven tertiary institutions that offer agriculture science as a course of study in Oyo State was the population. A university, a college of agriculture and a college of education were sampled, and a department from each was randomly selected. Twenty percent of the students’ population in the respective selected department gave a sample size of 165. Questionnaire was used to collect information on respondents’ personal characteristics and information related to access to social media. Data were analysed using descriptive statistics, chi-square, correlation, and multiple regression at the 0.05 confidence level. Age and household size were 21.13 ± 2.64 years and 6 ± 2.1 persons respectively. All respondents had access to social media, majority (86.1%) owned Android phone, 57.6% and 52.7% use social media for course work and entertainment respectively, while the commonly visited sites were WhatsApp, Facebook, Google, Opera mini. Over half (53.9%) had an unfavourable attitude towards the use of social media for learning; benefits of the use of social media for learning was high (56.4%). Removal of information barrier created by distance (x̄=1.58) was the most derived benefit, while inadequate power supply (x̄=2.36), was the most severe constraints. Age (β=0.23), sex (β=0.37), ownership of Android phone (β=-1.29), attitude (β=0.37), constraints (β =-0.26) and use of social media (β=0.23) were significant predictors of influence on perceived learning outcomes.Keywords: use of social media, agricultural science students, undergraduates of tertiary institutions, Oyo State of Nigeria
Procedia PDF Downloads 1476509 Enriched Education: The Classroom as a Learning Network through Video Game Narrative Development
Authors: Wayne DeFehr
Abstract:
This study is rooted in a pedagogical approach that emphasizes student engagement as fundamental to meaningful learning in the classroom. This approach creates a paradigmatic shift, from a teaching practice that reinforces the teacher’s central authority to a practice that disperses that authority among the students in the classroom through networks that they themselves develop. The methodology of this study about creating optimal conditions for learning in the classroom includes providing a conceptual framework within which the students work, as well as providing clearly stated expectations for work standards, content quality, group methodology, and learning outcomes. These learning conditions are nurtured in a variety of ways. First, nearly every class includes a lecture from the professor with key concepts that students need in order to complete their work successfully. Secondly, students build on this scholarly material by forming their own networks, where students face each other and engage with each other in order to collaborate their way to solving a particular problem relating to the course content. Thirdly, students are given short, medium, and long-term goals. Short term goals relate to the week’s topic and involve workshopping particular issues relating to that stage of the course. The medium-term goals involve students submitting term assignments that are evaluated according to a well-defined rubric. And finally, long-term goals are achieved by creating a capstone project, which is celebrated and shared with classmates and interested friends on the final day of the course. The essential conclusions of the study are drawn from courses that focus on video game narrative. Enthusiastic student engagement is created not only with the dynamic energy and expertise of the instructor, but also with the inter-dependence of the students on each other to build knowledge, acquire skills, and achieve successful results.Keywords: collaboration, education, learning networks, video games
Procedia PDF Downloads 1206508 Reading Strategies of Generation X and Y: A Survey on Learners' Skills and Preferences
Authors: Kateriina Rannula, Elle Sõrmus, Siret Piirsalu
Abstract:
Mixed generation classroom is a phenomenon that current higher education establishments are faced with daily trying to meet the needs of modern labor market with its emphasis on lifelong learning and retraining. Representatives of mainly X and Y generations in one classroom acquiring higher education is a challenge to lecturers considering all the characteristics that differ one generation from another. The importance of outlining different strategies and considering the needs of the students lies in the necessity for everyone to acquire the maximum of the provided knowledge as well as to understand each other to study together in one classroom and successfully cooperate in future workplaces. In addition to different generations, there are also learners with different native languages which have an impact on reading and understanding texts in third languages, including possible translation. Current research aims to investigate, describe and compare reading strategies among the representatives of generation X and Y. Hypotheses were formulated - representatives of generation X and Y use different reading strategies which is also different among first and third year students of the before mentioned generations. Current study is an empirical, qualitative study. To achieve the aim of the research, relevant literature was analyzed and a semi-structured questionnaire conducted among the first and third year students of Tallinn Health Care College. Questionnaire consisted of 25 statements on the text reading strategies, 3 multiple choice questions on preferences considering the design and medium of the text, and three open questions on the translation process when working with a text in student’s third language. The results of the questionnaire were categorized, analyzed and compared. Both, generation X and Y described their reading strategies to be 'scanning' and 'surfing'. Compared to generation X, first year generation Y learners valued interactivity and nonlinear texts. Students frequently used strategies of skimming, scanning, translating and highlighting together with relevant-thinking and assistance-seeking. Meanwhile, the third-year generation Y students no longer frequently used translating, resourcing and highlighting while Generation X learners still incorporated these strategies. Knowing about different needs of the generations currently inside the classrooms and on the labor market enables us with tools to provide sustainable education and grants the society a work force that is more flexible and able to move between professions. Future research should be conducted in order to investigate the amount of learning and strategy- adoption between generations. As for reading, main suggestions arising from the research are as follows: make a variety of materials available to students; allow them to select what they want to read and try to make those materials visually attractive, relevant, and appropriately challenging for learners considering the differences of generations.Keywords: generation X, generation Y, learning strategies, reading strategies
Procedia PDF Downloads 1826507 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 1446506 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 1186505 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI
Authors: Genady Grabarnik, Serge Yaskolko
Abstract:
Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education
Procedia PDF Downloads 62