Search results for: operating time
16700 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 15716699 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 48916698 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 42016697 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity
Procedia PDF Downloads 27416696 Successes on in vitro Isolated Microspores Embryogenesis
Authors: Zelikha Labbani
Abstract:
The In Vitro isolated micro spore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a micro spore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the micro spore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of micro spore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, micro spore became a strategy to achieve various objectives particularly in genetic engineering. In this study we would show the most recent advances in the producing haploid embryos via In Vitro isolated micro spore culture.Keywords: haploid cells, In Vitro isolated microspore culture, success
Procedia PDF Downloads 61616695 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region
Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang
Abstract:
During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.Keywords: cross section, neutron transport, numerical simulation, on-the-fly
Procedia PDF Downloads 19716694 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts
Authors: Linda Dusman, Linda Baker
Abstract:
The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.Keywords: audience engagement, informal education, music technology, real-time learning
Procedia PDF Downloads 20316693 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 13816692 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD
Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang
Abstract:
In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.Keywords: LTE-A, relay, TDD, power saving
Procedia PDF Downloads 51616691 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization
Procedia PDF Downloads 14716690 Contribution of the Cogeneration Systems to Environment and Sustainability
Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin
Abstract:
Kind of energy that buildings need changes in various types, like heating energy, cooling energy, electrical energy and thermal energy for hot top water. Usually the processes or systems produce thermal energy causes emitting pollutant emissions while they produce heat because of fossil fuels they use. A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect and a lesser dependence of the hospital on the external power supply. Cogeneration or CHP (Combined heat and Power) is the system that produces power and usable heat simultaneously. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. Because of the life standard of humanity in new age, energy sources must be continually and best qualified. For this reason the installation of a system for the simultaneous generation of electrical, heating and cooling energy would be one of the best solutions if we want to have qualified energy and reduce investment and operating costs and meet ecological requirements. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions.Keywords: sustainability, cogeneration systems, energy economy, energy saving
Procedia PDF Downloads 51816689 3D Guided Image Filtering to Improve Quality of Short-Time Binned Dynamic PET Images Using MRI Images
Authors: Tabassum Husain, Shen Peng Li, Zhaolin Chen
Abstract:
This paper evaluates the usability of 3D Guided Image Filtering to enhance the quality of short-time binned dynamic PET images by using MRI images. Guided image filtering is an edge-preserving filter proposed to enhance 2D images. The 3D filter is applied on 1 and 5-minute binned images. The results are compared with 15-minute binned images and the Gaussian filtering. The guided image filter enhances the quality of dynamic PET images while also preserving important information of the voxels.Keywords: dynamic PET images, guided image filter, image enhancement, information preservation filtering
Procedia PDF Downloads 13316688 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR
Authors: Hermalina Sinay, Estri L. Arumingtyas
Abstract:
The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku
Procedia PDF Downloads 29916687 A Study on the Effect of Rib Structure in Spoke-Type PMSM
Authors: Hyun-Soo Seol, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Rotor of Spoke-Type PMSM is divided into permanent magnet and rotor core. Moreover, rotor core is composed of pole-piece, Bridge and rib. Piece between the permanent magnet N and S poles is pole-piece. Bridge and rib hold pole-piece. In the case of pole-piece and bridge, it is essential structure of Spoke-Type PMSM. However, Rib can be selected by the designer depending on the operating conditions and constraints. If rib is present in the rotor, rib which acts in the leak path generates a leakage flux. Although the leakage flux reduces the torque in low speed, it expands speed range in high speed. So, there is a relationship of trade off. Viewed from the standpoint of permanent magnet demagnetization, since the magnetic flux by the stator winding leaks to the rib, it is an advantage. In addition, rib affects the safety factor of the rotor. For application required high speed operation, since the securing the safety factor of the rotor is important, rib structure is advantageous. On the other hand, in the case of the application that does not require high speed operation, it is desirable to increase the output power by designing without rib. In this paper, Effects on rib structure is analyzed in detail and this paper provides designer with information about rotor design of spoke-type PMSM according to rib structure.Keywords: spoke-Type PMSM, rotor shape, rib, operation range
Procedia PDF Downloads 43016686 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 34116685 Technological Innovations as a Potential Vehicle for Supply Chain Integration on Basic Metal Industries
Authors: Alie Wube Dametew, Frank Ebinger
Abstract:
This study investigated the roles of technological innovation on basic metal industries and then developed technological innovation framework for enhancing sustainable competitive advantage in the basic metal industries. The previous research work indicates that technological innovation has critical impact in promoting local industries to improve their performance and achieve sustainable competitive environments. The filed observation, questioner and expert interview result from basic metal industries indicate that the technological capability of local industries to invention, adoption, modification, improving and use a given innovative technology is very poor. As the result, this poor technological innovation was occurred due to improper innovation and technology transfer framework, non-collaborative operating environment between foreign and local industries, very weak national technology policies, problems research and innovation centers, the common miss points on basic metal industry innovation systems were investigated in this study. One of the conclusions of the article is that, through using the developed technological innovation framework in this study, basic metal industries improve innovation process and support an innovative culture for sector capabilities and achieve sustainable competitive advantage.Keywords: technological innovation, competitive advantage, sustainable, basic metal industry, conceptual model, sustainability, supply chain integration
Procedia PDF Downloads 24516684 Computational Models for Accurate Estimation of Joint Forces
Authors: Ibrahim Elnour Abdelrahman Eltayeb
Abstract:
Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.Keywords: joint force, joint model, optimisation problem, validation
Procedia PDF Downloads 17016683 Intertemporal Individual Preferences for Climate Change Intergenerational Investments – Estimating the Social Discount Rate for Poland
Authors: Monika Foltyn-Zarychta
Abstract:
Climate change mitigation investment activities are inevitably extended in time extremely. The project cycle does not last for decades – sometimes it stretches out for hundreds of years and the project outcomes impact several generations. The longevity of those activities raises multiple problems in the appraisal procedure. One of the pivotal issues is the choice of the discount rate, which affect tremendously the net present value criterion. The paper aims at estimating the value of social discount rate for intergenerational investment projects in Poland based on individual intertemporal preferences. The analysis is based on questionnaire surveying Polish citizens and designed as contingent valuation method. The analysis aimed at answering two questions: 1) whether the value of the individual discount rate decline with increased time of delay, and 2) whether the value of the individual discount rate changes with increased spatial distance toward the gainers of the project. The valuation questions were designed to identify respondent’s indifference point between lives saved today and in the future due to hypothetical project mitigating climate changes. Several project effects’ delays (of 10, 30, 90 and 150 years) were used to test the decline in value with time. The variability in regard to distance was tested by asking respondents to estimate their indifference point separately for gainers in Poland and in Latvia. The results show that as the time delay increases, the average discount rate value decreases from 15,32% for 10-year delay to 2,75% for 150-year delay. Similar values were estimated for Latvian beneficiaries. There should be also noticed that the average volatility measured by standard deviation also decreased with time delay. However, the results did not show any statistically significant difference in discount rate values for Polish and Latvian gainers. The results showing the decline of the discount rate with time prove the possible economic efficiency of the intergenerational effect of climate change mitigation projects and may induce the assumption of the altruistic behavior of present generation toward future people. Furthermore, it can be backed up by the same discount rate level declared by Polish for distant in space Latvian gainers. The climate change activities usually need significant outlays and the payback period is extremely long. The more precise the variables in the appraisal are, the more trustworthy and rational the investment decision is. The discount rate estimations for Poland add to the vivid discussion concerning the issue of climate change and intergenerational justice.Keywords: climate change, social discount rate, investment appraisal, intergenerational justice
Procedia PDF Downloads 23816682 Acidity and Aridity: Soil Carbon Storage and Myeloablation
Authors: Tom Spears, Zotique Laframboise
Abstract:
Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 arid soil samples taken from 6 profiles in the Nepean Desert, Canada, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. We investigated the possible implications for tectonic platelet activity but identified none.Keywords: soil, carbon storage, acidity, soil inorganic carbon (SIC)
Procedia PDF Downloads 49016681 Problems and Needs Help of Frozen Shrimp Industry Small and Medium in the Central Region of the Lower Three Provinces
Authors: P. Thepnarintra
Abstract:
Frozen shrimp industry plays an important role in the development of production industry of the country. There has been a continuing development to response the increasing demand; however, there have been some problems in running the enterprises. The purposes of this study are to: 1) investigate problems related to basic factors in operating frozen shrimp industry based on the entrepreneurs’ points of view. The enterprises involved in this study were small and medium industry receiving Thai Frozen Foods Association. 2) Compare the problems of the frozen shrimp industry according to their sizes of operation in 3 provinces of the central region Thailand. Population in this study consisted of 148 managers from 148 frozen shrimp enterprises Thai Frozen Foods Association, of which 77 were small size and 71 were medium size. The data were analyzed to find percentage, arithmetic mean, standard deviation, and independent sample T-test with the significant hypothesis at .05. The results revealed that the problems of the frozen shrimp industries of both size were in high level. The needs for government supporting were in high level. The comparison of the problems and the basic factors between the small and medium size enterprises showed no statistically significant level. The problems that they mentioned included raw materials, labors, production, marketing, and the need for academic supporting from the government sector.Keywords: frozen shrimp industry, problems, related to the enterprise, operation
Procedia PDF Downloads 54116680 Finite Time Blow-Up and Global Solutions for a Semilinear Parabolic Equation with Linear Dynamical Boundary Conditions
Authors: Xu Runzhang, Yang Yanbing, Niu Yi, Zhang Mingyou, Liu Yu
Abstract:
For a class of semilinear parabolic equations with linear dynamical boundary conditions in a bounded domain, we obtain both global solutions and finite time blow-up solutions when the initial data varies in the phase space H1(Ω). Our main tools are the comparison principle, the potential well method and the concavity method. In particular, we discuss the behavior of the solutions with the initial data at critical and high energy level.Keywords: high energy level, critical energy level, linear dynamical boundary condition, semilinear parabolic equation
Procedia PDF Downloads 43616679 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: back-projection, image comparison, non-uniform FFT, photoacoustic tomography
Procedia PDF Downloads 43416678 Making New Theoretical Insights into Violence: The Temporal and Spatial Relevance of Blood Spatter Crime Scene Investigations
Authors: Simone Jane Dennis
Abstract:
This paper leverages the spatial and temporal investigative strategy utilized by crime scene investigators – blood spatter work– to engage with the real and metaphorical memorialization of blood-soaked places. It uses this key trope with phenomenological sensibility, to trace the physical and temporal movement of blood outbound from the human body to sites beyond. Working backward, as crime scene investigators do, this paper traces the importance of both space and time and their confluence, to developing a comprehensive theory of violence. To do this work, the paper engages a range of geo-violent scales, from murder scenes to genocides, to both engage an extraordinarily replete literature of bloodshed across history and to move beyond analyses of how significance is assigned to the sites in which blood comes to rest to instead consider the importance of space and time to the structure of violence itself. It is in this regard that the kind of investigative work upon which blood spatter analysis depends is crucial: it engages time and space in reverse to understand the microscopic relations between bodies, places, and numerous (biological, clock, and seasonal) temporalities. Considering the circumstances under which blood escaped a body, the details of its destination in place, and the temporal circumstances of corporal departure, is crucial to making new knowledge about the peculiar temporality and spatiality of violence itself.Keywords: blood, crime scenes, temporality, violence
Procedia PDF Downloads 7016677 A New Mathematical Model for Scheduling Preventive Maintenance and Renewal Projects of Multi-Unit Systems; Application to Railway Track
Authors: Farzad Pargar
Abstract:
We introduce the preventive maintenance and renewal scheduling problem for a multi-unit system over a finite and discretized time horizon. Given the latest possible time for carrying out the next maintenance and renewal projects after the previous ones and considering several common set-up costs, the introduced scheduling model tries to minimize the cost of projects by grouping them and simultaneously finding the optimal balance between doing maintenance and renewal. We present a 0-1 pure integer linear programming that determines which projects should be performed together on which location and in which period (e.g., week or month). We consider railway track as a case for our study and test the performance of the proposed model on a set of test problems. The experimental results show that the proposed approach performs well.Keywords: maintenance, renewal, scheduling, mathematical programming model
Procedia PDF Downloads 68816676 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 21016675 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things
Authors: Wei Hu, Wenguang Chen, Chong Dong
Abstract:
In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management
Procedia PDF Downloads 12516674 Application of Magnetic-Nano Photocatalyst for Removal of Xenobiotic Compounds
Authors: Prashant K. Sharma, Kavita Shah
Abstract:
In recent years, the photochemistry of nanomagnetic particles is being utilized for the removal of various pollutants. In the current era where large quantities of various xenobiotic compounds are released in the environment some of which are highly toxic are being used routinely by industries and consumers. Extensive use of these chemicals provides greater risk to plants, animals and human population which has been reviewed from time to time. Apart from the biological degradation, photochemical removal holds considerable promise for the abatement of these pesticides in wastewaters. This paper reviews the photochemical removal of xenobiotic compounds. It is evident from the review that removal depends on several factors such as pH of the solution, catalysts loading, initial concentration, light intensity and so on and so forth. Since the xenobiotics are ubiquitously present in the wastewaters, photochemical technology seems imperative to alleviate the pollution problems associated with the xenobiotics. However, commercial application of this technology has to be clearly assessed.Keywords: magnetic, nanoparticles, photocatalayst, xenobiotic compounds
Procedia PDF Downloads 37616673 The Effect of Pulsator on Washing Performance in a Front-Loading Washer
Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic
Abstract:
The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.Keywords: front-loading washer, mechanical force, fabric movement, pulsator, time-saving
Procedia PDF Downloads 26216672 The AI Method and System for Analyzing Wound Status in Wound Care Nursing
Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu
Abstract:
This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance
Procedia PDF Downloads 11616671 A Monolithic Arbitrary Lagrangian-Eulerian Finite Element Strategy for Partly Submerged Solid in Incompressible Fluid with Mortar Method for Modeling the Contact Surface
Authors: Suman Dutta, Manish Agrawal, C. S. Jog
Abstract:
Accurate computation of hydrodynamic forces on floating structures and their deformation finds application in the ocean and naval engineering and wave energy harvesting. This manuscript presents a monolithic, finite element strategy for fluid-structure interaction involving hyper-elastic solids partly submerged in an incompressible fluid. A velocity-based Arbitrary Lagrangian-Eulerian (ALE) formulation has been used for the fluid and a displacement-based Lagrangian approach has been used for the solid. The flexibility of the ALE technique permits us to treat the free surface of the fluid as a Lagrangian entity. At the interface, the continuity of displacement, velocity and traction are enforced using the mortar method. In the mortar method, the constraints are enforced in a weak sense using the Lagrange multiplier method. In the literature, the mortar method has been shown to be robust in solving various contact mechanics problems. The time-stepping strategy used in this work reduces to the generalized trapezoidal rule in the Eulerian setting. In the Lagrangian limit, in the absence of external load, the algorithm conserves the linear and angular momentum and the total energy of the system. The use of monolithic coupling with an energy-conserving time-stepping strategy gives an unconditionally stable algorithm and allows the user to take large time steps. All the governing equations and boundary conditions have been mapped to the reference configuration. The use of the exact tangent stiffness matrix ensures that the algorithm converges quadratically within each time step. The robustness and good performance of the proposed method are demonstrated by solving benchmark problems from the literature.Keywords: ALE, floating body, fluid-structure interaction, monolithic, mortar method
Procedia PDF Downloads 274