Search results for: predictive models
4320 Material Response Characterisation of a PolyJet 3D Printed Human Infant Skull
Authors: G. A. Khalid, R. Prabhu, W. Whittington, M. D. Jones
Abstract:
To establish a causal relationship of infant head injury consequences, this present study addresses the necessary challenges of cranial geometry and the physical response complexities of the paediatric head tissues. Herein, we describe a new approach to characterising and understanding infant head impact mechanics by developing printed head models, using high resolution clinical postmortem imaging, to provide the most complete anatomical representation currently available, and biological material response data-matched polypropylene polymers, to replicate the relative mechanical response properties of immature cranial bone, sutures and fontanelles. Additive manufacturing technology was applied to creating a physical polymeric model of a newborn infant skull, using PolyJet printed materials. Infant skull materials responses, were matched by a response characterisation study, utilising uniaxial tensile testing (1 mm min-1 loading rate), to determine: the stiffness, ultimate tensile strength and maximum strain of rigid and rubber additively manufactured acrylates. The results from the mechanical experiments confirm that the polymeric materials RGD835 Vero White Plus (White), representing the frontal and parietal bones; RGD8510- DM Rigid Light Grey25 (Grey), representing the occipital bone; and FLX9870-DM (Black) representing the suture and fontanelles, were found to show a close stiffness -correlation (E) at ambient temperatures. A 3D physical model of infant head was subsequently printed from the matched materials and subsequently validated against results obtained from a series of Post Mortem Human Surrogate (PMHS) tests. A close correlation was demonstrated between the model impact tests and the PMHS. This study, therefore, represents a key step towards applying printed physical models to understanding head injury biomechanics and is useful in the efforts to predict and mitigate head injury consequences in infants, whether accidental or by abuse.Keywords: infant head trauma, infant skull, material response, post mortem human subjects, polyJet printing
Procedia PDF Downloads 1444319 Prediction of Turbulent Separated Flow in a Wind Tunel
Authors: Karima Boukhadia
Abstract:
In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone
Procedia PDF Downloads 5804318 Influence of the Test Environment on the Dynamic Response of a Composite Beam
Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar
Abstract:
Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.Keywords: vibration, composite, endommagement, correlation
Procedia PDF Downloads 3684317 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 5154316 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 1874315 Extended Kalman Filter Based Direct Torque Control of Permanent Magnet Synchronous Motor
Authors: Liang Qin, Hanan M. D. Habbi
Abstract:
A robust sensorless speed for permanent magnet synchronous motor (PMSM) has been presented for estimation of stator flux components and rotor speed based on The Extended Kalman Filter (EKF). The model of PMSM and its EKF models are modeled in Matlab /Sirnulink environment. The proposed EKF speed estimation method is also proved insensitive to the PMSM parameter variations. Simulation results demonstrate a good performance and robustness.Keywords: DTC, Extended Kalman Filter (EKF), PMSM, sensorless control, anti-windup PI
Procedia PDF Downloads 6674314 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa
Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel
Abstract:
Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group
Procedia PDF Downloads 1134313 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 174312 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce
Authors: Heiko Diefenbach, Christoph H. Glock
Abstract:
Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.Keywords: an aging workforce, error prevention, order picking, storage assignment
Procedia PDF Downloads 2094311 Designing the Lesson Instructional Plans for Exploring the STEM Education and Creative Learning Processes to Students' Logical Thinking Abilities with Different Learning Outcomes in Chemistry Classes
Authors: Pajaree Naramitpanich, Natchanok Jansawang, Panwilai Chomchid
Abstract:
The aims of this are compared between the students’ logical thinking abilities of their learning for designing the 5-lesson instructional plans of the 2-instructional methods, namely; the STEM Education and the Creative Learning Process (CLP) for developing students’ logical thinking abilities that a sample consisted of 90 students from two chemistry classes of different learning outcomes in Wapi Phathum School with the cluster random sampling technique was used at the 11th grade level. To administer of their learning environments with the 45-experimenl student group by the STEM Education method and the 45-controlling student group by the Creative Learning Process. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of the STEM Education and the Creative Learning Process to enhance the logical thinking tests on Mineral issue were used. The efficiency of the Creative Learning Processes (CLP) Model and the STEM Education’s innovations of these each five instructional lesson plans based on criteria are higher than of 80/80 standard level with the IOC index from the expert educators. The averages mean scores of students’ learning achievement motives were assessed with the Pre and Post Techniques and Logical Thinking Ability Test (LTAT) and dependent t-test analysis were differentiated between the CLP and the STEM, significantly. Students’ perceptions of their chemistry classroom environment inventories with the MCI with the CLP and the STEM methods also were found, differently. Associations between students’ perceptions of their chemistry classroom learning environment inventories on the CLP Model and the STEM Education learning designs toward their logical thinking abilities toward chemistry, the predictive efficiency of R2 values indicate that 68% and 76% of the variances in students’ logical thinking abilities toward chemistry to their controlling and experimental chemistry classroom learning environmental groups with the MCI were correlated at .05 levels, significantly. Implementations of this result are showed the students’ learning by the CLP of the potential thinking life-changing roles in most their logical thinking abilities that it is revealed that the students perceive their abilities to be highly learning achievement in chemistry group are differentiated with the STEM education of students’ outcomes.Keywords: design, the lesson instructional plans, the stem education, the creative learning process, logical thinking ability, different, learning outcome, student, chemistry class
Procedia PDF Downloads 3254310 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters
Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas
Abstract:
Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.Keywords: ammonia removal, biofiltration, natural materials, odour control
Procedia PDF Downloads 3724309 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost
Authors: German Osma, Gabriel Ordonez
Abstract:
The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling
Procedia PDF Downloads 1734308 Geomatic Techniques to Filter Vegetation from Point Clouds
Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades
Abstract:
More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud
Procedia PDF Downloads 1604307 How Does Ethics Impact Marketing Decision Making of a Company: An Evidence from the Telecommunication Sector of Pakistan
Authors: Mohammad Daud Ali
Abstract:
For the past decade, marketing ethics has been a central point for academic researchers and practitioners. In particular, the development of frameworks and models to help in the analysis of marketing decisions are the focus of research. The current study aims at finding whether ethical decisions (honesty, fairness, responsibility, and respect) affect organizational marketing decisions. A selection of 250 respondents was purposely made from the telecommunication industry of Pakistan, out of which 204 responses were induced at an acceptable rate of 81.6%. A five-point Likert Scale, itemized with 12 items, was adopted from Taylor-Dunlop & Lester (2000) and used to draw responses regarding ethics.Keywords: marketing, ethics, decisions making, telecommunication, Pakistan
Procedia PDF Downloads 1034306 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 894305 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 324304 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus
Procedia PDF Downloads 2234303 Using ICESat-2 Dynamic Ocean Topography to Estimate Western Arctic Freshwater Content
Authors: Joshua Adan Valdez, Shawn Gallaher
Abstract:
Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport, modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116km3/year across the Beaufort Gyre. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff, and is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity-driven pycnocline as opposed to the temperature-driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and dynamic ocean topography (DOT). In situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time-consuming. Utilizing NASA’s ICESat-2’s DOT remote sensing capabilities and Air Expendable CTD (AXCTD) data from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), a linear regression model between DOT and freshwater content is determined along the 150° west meridian. Freshwater content is calculated by integrating the volume of water between the surface and a depth with a reference salinity of ~34.8. Using this model, we compare interannual variability in freshwater content within the gyre, which could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non-in situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially demonstrate the value of remote sensing tools to reduce reliance on field deployment platforms to characterize physical ocean properties.Keywords: Cryosphere, remote sensing, Arctic oceanography, climate modeling, Ekman transport
Procedia PDF Downloads 804302 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity
Procedia PDF Downloads 1324301 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 4274300 Computed Tomography Myocardial Perfusion on a Patient with Hypertrophic Cardiomyopathy
Authors: Jitendra Pratap, Daphne Prybyszcuk, Luke Elliott, Arnold Ng
Abstract:
Introduction: Coronary CT angiography is a non-invasive imaging technique for the assessment of coronary artery disease and has high sensitivity and negative predictive value. However, the correlation between the degree of CT coronary stenosis and the significance of hemodynamic obstruction is poor. The assessment of myocardial perfusion has mostly been undertaken by Nuclear Medicine (SPECT), but it is now possible to perform stress myocardial CT perfusion (CTP) scans quickly and effectively using CT scanners with high temporal resolution. Myocardial CTP is in many ways similar to neuro perfusion imaging technique, where radiopaque iodinated contrast is injected intravenously, transits the pulmonary and cardiac structures, and then perfuses through the coronary arteries into the myocardium. On the Siemens Force CT scanner, a myocardial perfusion scan is performed using a dynamic axial acquisition, where the scanner shuffles in and out every 1-3 seconds (heart rate dependent) to be able to cover the heart in the z plane. This is usually performed over 38 seconds. Report: A CT myocardial perfusion scan can be utilised to complement the findings of a CT Coronary Angiogram. Implementing a CT Myocardial Perfusion study as part of a routine CT Coronary Angiogram procedure provides a ‘One Stop Shop’ for diagnosis of coronary artery disease. This case study demonstrates that although the CT Coronary Angiogram was within normal limits, the perfusion scan provided additional, clinically significant information in regards to the haemodynamics within the myocardium of a patient with Hypertrophic Obstructive Cardio Myopathy (HOCM). This negated the need for further diagnostics studies such as cardiac ECHO or Nuclear Medicine Stress tests. Conclusion: CT coronary angiography with adenosine stress myocardial CTP was utilised in this case to specifically exclude coronary artery disease in conjunction with accessing perfusion within the hypertrophic myocardium. Adenosine stress myocardial CTP demonstrated the reduced myocardial blood flow within the hypertrophic myocardium, but the coronary arteries did not show any obstructive disease. A CT coronary angiogram scan protocol that incorporates myocardial perfusion can provide diagnostic information on the haemodynamic significance of any coronary artery stenosis and has the potential to be a “One Stop Shop” for cardiac imaging.Keywords: CT, cardiac, myocardium, perfusion
Procedia PDF Downloads 1364299 Analysis of the Annual Proficiency Testing Procedure for Intermediate Reference Laboratories Conducted by the National Reference Laboratory from 2013 to 2017
Authors: Reena K., Mamatha H. G., Somshekarayya, P. Kumar
Abstract:
Objectives: The annual proficiency testing of intermediate reference laboratories is conducted by the National Reference Laboratory (NRL) to assess the efficiency of the laboratories to correctly identify Mycobacterium tuberculosis and to determine its drug susceptibility pattern. The proficiency testing results from 2013 to 2017 were analyzed to determine laboratories that were consistent in reporting quality results and those that had difficulty in doing so. Methods: A panel of twenty cultures were sent out to each of these laboratories. The laboratories were expected to grow the cultures in their own laboratories, set up drug susceptibly testing by all the methods they were certified for and report the results within the stipulated time period. The turnaround time for reporting results, specificity, sensitivity positive and negative predictive values and efficiency of the laboratory in identifying the cultures were analyzed. Results: Most of the laboratories had reported their results within the stipulated time period. However, there was enormous delay in reporting results from few of the laboratories. This was mainly due to improper functioning of the biosafety level III laboratory. Only 40% of the laboratories had 100% efficiency in solid culture using Lowenstein Jensen medium. This was expected as a solid culture, and drug susceptibility testing is not used for diagnosing drug resistance. Rapid molecular methods such as Line probe assay and Genexpert are used to determine drug resistance. Automated liquid culture system such as the Mycobacterial growth indicator tube is used to determine prognosis of the patient while on treatment. It was observed that 90% of the laboratories had achieved 100% in the liquid culture method. Almost all laboratories had achieved 100% efficiency in the line probe assay method which is the method of choice for determining drug-resistant tuberculosis. Conclusion: Since the liquid culture and line probe assay technologies are routinely used for the detection of drug-resistant tuberculosis the laboratories exhibited higher level of efficiency as compared to solid culture and drug susceptibility testing which are rarely used. The infrastructure of the laboratory should be maintained properly so that samples can be processed safely and results could be declared on time.Keywords: annual proficiency testing, drug susceptibility testing, intermediate reference laboratory, national reference laboratory
Procedia PDF Downloads 1834298 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine
Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova
Abstract:
The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave
Procedia PDF Downloads 3804297 Uni … Mihi ('to Me Only'): Patterns of Uniqueness in Statius' Thebaid and Silius' Punica
Authors: Arianna Sacerdoti
Abstract:
There is a rich and frequent representation of uniqueness in Statius’ poem called Thebaid. This topos interweave with a psychoanalytical study about groups and individual but is also a literary device. This paper will analyze all the passages in the 'Thebaid' referred to uniqueness and exceptionality. Antigone, Adrastus and other characters are, in fact, often characterized as the only ones to behave in a specific way or to do something. Also, the insomniac characters are often the only ones who do not sleep. The material of such a tòpos is very rich throughout the 'Thebaid'. The methodology will be text-oriented. Conclusions will enlighten Statius’ specific use of this tòpos, as related to his models, and will be interdisciplinary. In concluding, this is a study linking philology and psychoanalysis and focused on a topic which deserves a specific analysis.Keywords: statius, Silius Italicus, uniqueness, epic
Procedia PDF Downloads 1844296 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models
Authors: Navid Mirzaei Varzeghani, Mahmoud Saffarzadeh, Ali Naderan, Amirhossein Taheri
Abstract:
Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, a range of ages more significant than 55, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.Keywords: multimodal transportation, demand modeling, travel behavior, statistical models
Procedia PDF Downloads 1774295 Application of the Building Information Modeling Planning Approach to the Factory Planning
Authors: Peggy Näser
Abstract:
Factory planning is a systematic, objective-oriented process for planning a factory, structured into a sequence of phases, each of which is dependent on the preceding phase and makes use of particular methods and tools, and extending from the setting of objectives to the start of production. The digital factory, on the other hand, is the generic term for a comprehensive network of digital models, methods, and tools – including simulation and 3D visualisation – integrated by a continuous data management system. Its aim is the holistic planning, evaluation and ongoing improvement of all the main structures, processes and resources of the real factory in conjunction with the product. Digital factory planning has already become established in factory planning. The application of Building Information Modeling has not yet been established in factory planning but has been used predominantly in the planning of public buildings. Furthermore, this concept is limited to the planning of the buildings and does not include the planning of equipment of the factory (machines, technical equipment) and their interfaces to the building. BIM is a cooperative method of working, in which the information and data relevant to its lifecycle are consistently recorded, managed and exchanged in a transparent communication between the involved parties on the basis of digital models of a building. Both approaches, the planning approach of Building Information Modeling and the methodical approach of the Digital Factory, are based on the use of a comprehensive data model. Therefore it is necessary to examine how the approach of Building Information Modeling can be extended in the context of factory planning in such a way that an integration of the equipment planning, as well as the building planning, can take place in a common digital model. For this, a number of different perspectives have to be investigated: the equipment perspective including the tools used to implement a comprehensive digital planning process, the communication perspective between the planners of different fields, the legal perspective, that the legal certainty in each country and the quality perspective, on which the quality criteria are defined and the planning will be evaluated. The individual perspectives are examined and illustrated in the article. An approach model for the integration of factory planning into the BIM approach, in particular for the integrated planning of equipment and buildings and the continuous digital planning is developed. For this purpose, the individual factory planning phases are detailed in the sense of the integration of the BIM approach. A comprehensive software concept is shown on the tool. In addition, the prerequisites required for this integrated planning are presented. With the help of the newly developed approach, a better coordination between equipment and buildings is to be achieved, the continuity of the digital factory planning is improved, the data quality is improved and expensive implementation errors are avoided in the implementation.Keywords: building information modeling, digital factory, digital planning, factory planning
Procedia PDF Downloads 2724294 Matlab/Simulink Simulation of Solar Energy Storage System
Authors: Mustafa A. Al-Refai
Abstract:
This paper investigates the energy storage technologies that can potentially enhance the use of solar energy. Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Starting from the analysis of the models of the system components, a complete simulation model was realized in the Matlab-Simulink environment. Results of the numerical simulations are provided. The operation of electrolysis and photovoltaic array combination is verified at various insulation levels. It is pointed out that solar cell arrays and electrolysers are producing the expected results with solar energy inputs that are continuously varying.Keywords: electrolyzer, simulink, solar energy, storage system
Procedia PDF Downloads 4394293 An investigation of the High-frequency Isolation Performance of Quasi-Zero-Stiffness Vibration Isolators
Authors: Chen Zhang, Yongpeng Gu, Xiaotian Li
Abstract:
Quasi-zero-stiffness (QZS) vibration isolation technology has garnered significant attention in both academia and industry, which enables ultra-low-frequency vibration isolation. In modern industries, such as shipbuilding and aerospace, rotating machinery generates vibrations over a wide frequency range, thus imposing more stringent requirements on vibration isolation technologies. These technologies must not only achieve ultra-low starting isolation frequencies but also provide effective isolation across mid- to high-frequency ranges. However, existing research on QZS vibration isolators primarily focuses on frequency ranges below 50 Hz. Moreover, studies have shown that in the mid-to high-frequency ranges, QZS isolators tend to generate resonance peaks that adversely affect their isolation performance. This limitation significantly restricts the practical applicability of QZS isolation technology. To address this issue, the present study investigates the high-frequency isolation performance of two typical QZS isolators: the mechanism type three-spring QZS isolator mechanism and the structure and bowl-shaped QZS isolator structure. First, the parameter conditions required to achieve quasi-zero stiffness characteristics for two isolators are derived based on static mechanical analysis. The theoretical transmissibility characteristics are then calculated using the harmonic balance method. Three-dimensional finite element models of two QZS isolators are developed using ABAQUS simulation software, and transmissibility curves are computed for the 0-500 Hz frequency range. The results indicate that the three-spring QZS mechanism exhibits multiple higher-order resonance peaks in the mid-to high-frequency ranges due to the higher-order models of the springs. Springs with fewer coils and larger diameters can shift the higher-order modals to higher frequencies but cannot entirely eliminate their occurrence. In contrast, the bowl-shaped QZS isolator, through shape optimization using a spline-based representation, effectively mitigates the generation of higher-order resonance modes, resulting in superior isolation performance in the mid-to high-frequency ranges. This study provides essential theoretical insights for optimizing the vibration isolation performance of QZS technologies in complex, wide-frequency vibration environments, offering significant practical value for their application.Keywords: quasi-zero-stiffness, wide-frequency vibration, vibration isolator, transmissibility
Procedia PDF Downloads 144292 Model for Remanufacture of Medical Equipment in Cross Border Collaboration
Authors: Kingsley Oturu, Winifred Ijomah, Wale Coker, Chibueze Achi
Abstract:
With the impact of BREXIT and the need for cross-border collaboration, this international research investigated the use of a conceptual model for remanufacturing medical equipment (with a focus on anesthetic machines and baby incubators). Early findings of the research suggest that contextual factors need to be taken into consideration, as well as an emphasis on cleaning (e.g., sterilization) during the process of remanufacturing medical equipment. For example, copper tubings may be more important in the remanufacturing of anesthetic equipment in tropical climates than in cold climates.Keywords: medical equipment remanufacture, sustainability, circular business models, remanufacture process model
Procedia PDF Downloads 1764291 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging
Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul
Abstract:
Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.Keywords: mung bean, near infrared, germinatability, hard seed
Procedia PDF Downloads 309