Search results for: learning satisfaction
5529 Project-Bbased Learning (PBL) Taken to Extremes: Full-Year/Full-Time PBL Replacement of Core Curriculum
Authors: Stephen Grant Atkins
Abstract:
Radical use of project-based learning (PBL) in a small New Zealand business school provides an opportunity to longitudinally examine its effects over a decade of pre-Covid data. Prior to this business school’s implementation of PBL, starting in 2012, the business pedagogy literature presented just one example of PBL replacing an entire core-set of courses. In that instance, a British business school merged four of its ‘degree Year 3’ accounting courses into one PBL semester. As radical as that would have seemed, to students aged 20-to-22, the PBL experiment conducted in a New Zealand business school was notably more extreme: 41 nationally-approved Learning Outcomes (L.O.s), these deriving from 8 separate core courses, were aggregated into one grand set of L.O.s, and then treated as a ‘full-year’/‘full-time’ single course. The 8 courses in question were all components of this business school’s compulsory ‘degree Year 1’ curriculum. Thus, the students involved were notably younger (…ages 17-to-19…), and no ‘part-time’ enrolments were allowed. Of interest are this PBL experiment’s effects on subsequent performance outcomes in ‘degree Years 2 & 3’ (….which continued to operate in their traditional ways). Of special interest is the quality of ‘group project’ outcomes. This is because traditionally, ‘degree Year 1’ course assessments are only minimally based on group work. This PBL experiment altered that practice radically, such that PBL ‘degree Year 1’ alumni entered their remaining two years of business coursework with far more ‘project group’ experience. Timeline-wise, thus of interest here, firstly, is ‘degree Year 2’ performance outcomes data from years 2010-2012 + 2016-2018, and likewise ‘degree Year 3’ data for years 2011-2013 + 2017-2019. Those years provide a pre-&-post comparative baseline for performance outcomes in students never exposed to this school’s radical PBL experiment. That baseline is then compared to PBL alumni outcomes (2013-2016….including’Student Evaluation of Course Quality’ outcomes…) to clarify ‘radical PBL’ effects.Keywords: project-based learning, longitudinal mixed-methods, students criticism, effects-on-learning
Procedia PDF Downloads 975528 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises
Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus
Abstract:
In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.Keywords: editorialization, open educational resources, pedagogical alignment, produsage, repeatable self-correcting exercises, team roles
Procedia PDF Downloads 1225527 The Influence of Family of Origin on Children: A Comprehensive Model and Implications for Positive Psychology and Psychotherapy
Authors: Meichen He, Xuan Yang
Abstract:
Background: In the field of psychotherapy, the role of the family of origin is of utmost importance. Over the past few decades, both individual-oriented and family-oriented approaches to child therapy have shown moderate success in reducing children's psychological and behavioral issues. Objective: However, in exploring how the family of origin influences individuals, it has been noted that there is a lack of comprehensive measurement indicators and an absence of an exact model to assess the impact of the family of origin on individual development. Therefore, this study aims to develop a model based on a literature review regarding the influence of the family of origin on children. Specifically, it will examine the effects of factors such as education level, economic status, maternal age, family integration, family violence, marital conflict, parental substance abuse, and alcohol consumption on children's self-confidence and life satisfaction. Through this research, we aim to further investigate the impact of the family of origin on children and provide directions for future research in positive psychology and psychotherapy. Methods: This study will employ a literature review methodology to gather and analyze relevant research articles on the influence of the family of origin on children. Subsequently, we will conduct quantitative analyses to establish a comprehensive model explaining how family of origin factors affect children's psychological and behavioral outcomes. Findings: the research has revealed that family of origin factors, including education level, economic status, maternal age, family integration, family violence, marital conflict, parental drug and alcohol consumption, have an impact on children's self-confidence and life satisfaction. These factors can affect children's psychological well-being and happiness through various pathways. Implications: The results of this study will contribute to a better understanding of the influence of the family of origin on children and provide valuable directions for future research in positive psychology and psychotherapy. This research will enhance awareness of children's psychological well-being and lay the foundation for improving psychotherapeutic methods.Keywords: family of origion, positive psychology, developmental psychology, family education, social psychology, educational psychology
Procedia PDF Downloads 1655526 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 905525 Peer Instruction, Technology, Education for Textile and Fashion Students
Authors: Jimmy K. C. Lam, Carrie Wong
Abstract:
One of the key goals on Learning and Teaching as documented in the University strategic plan 2012/13 – 2017/18 is to encourage active learning, the use of innovative teaching approaches and technology, and promoting the adoption of flexible and varied teaching delivery methods. This research reported the recent visited to Prof Eric Mazur at Harvard University on Peer Instruction: Collaborative learning in large class and innovative use of technology to enable new mode of learning. Peer Instruction is a research-based, interactive teaching method developed by Prof. Eric Mazur at Harvard University in the 1990s. It has been adopted across the disciplines, institutional type and throughout the world. One problem with conventional teaching lies in the presentation of the material. Frequently, it comes straight out of textbook/notes, giving students little incentive to attend class. This traditional presentation is always delivered as monologue in front of passive audience. Only exceptional lecturers are capable of holding students’ attention for an entire lecture period. Consequently, lectures simply reinforce students’ feelings that the most important step in mastering the material is memorizing a zoo of unrelated examples. In order to address these misconceptions about learning, Prof Mazur’s Team developed “Peer Instruction”, a method which involves students in their own learning during lectures and focuses their attention on underling concepts. Lectures are interspersed with conceptual questions called Concept Tests, designed to expose common difficulties in understanding the material. The students are given one or two minutes to think about the question and formulate their own answers; they then spend two or three minutes discussing their answers in a group of three or four, attempting to reach consensus on the correct answer. This process forces the students to think through the arguments being developed, and enable them to assess their understanding concepts before they leave the classroom. The findings from Peer Instruction and innovative use of technology on teaching at Harvard University were applied to the first year Textiles and Fashion students in Hong Kong. Survey conducted from 100 students showed that over 80% students enjoyed the flexibility of peer instruction and 70% of them enjoyed the instant feedback from the Clicker system (Student Response System used at Harvard University). Further work will continue to explore the possibility of peer instruction to art and fashion students.Keywords: peer instruction, education, technology, fashion
Procedia PDF Downloads 3165524 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 2995523 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 2355522 An Empirical Study of Determinants Influencing Telemedicine Services Acceptance by Healthcare Professionals: Case of Selected Hospitals in Ghana
Authors: Jonathan Kissi, Baozhen Dai, Wisdom W. K. Pomegbe, Abdul-Basit Kassim
Abstract:
Protecting patient’s digital information is a growing concern for healthcare institutions as people nowadays perpetually live their lives through telemedicine services. These telemedicine services have been confronted with several determinants that hinder their successful implementations, especially in developing countries. Identifying such determinants that influence the acceptance of telemedicine services is also a problem for healthcare professionals. Despite the tremendous increase in telemedicine services, its adoption, and use has been quite slow in some healthcare settings. Generally, it is accepted in today’s globalizing world that the success of telemedicine services relies on users’ satisfaction. Satisfying health professionals and patients are one of the crucial objectives of telemedicine success. This study seeks to investigate the determinants that influence health professionals’ intention to utilize telemedicine services in clinical activities in a sub-Saharan African country in West Africa (Ghana). A hybridized model comprising of health adoption models, including technology acceptance theory, diffusion of innovation theory, and protection of motivation theory, were used to investigate these quandaries. The study was carried out in four government health institutions that apply and regulate telemedicine services in their clinical activities. A structured questionnaire was developed and used for data collection. Purposive and convenience sampling methods were used in the selection of healthcare professionals from different medical fields for the study. The collected data were analyzed based on structural equation modeling (SEM) approach. All selected constructs showed a significant relationship with health professional’s behavioral intention in the direction expected from prior literature including perceived usefulness, perceived ease of use, management strategies, financial sustainability, communication channels, patients security threat, patients privacy risk, self efficacy, actual service use, user satisfaction, and telemedicine services systems securities threat. Surprisingly, user characteristics and response efficacy of health professionals were not significant in the hybridized model. The findings and insights from this research show that health professionals are pragmatic when making choices for technology applications and also their willingness to use telemedicine services. They are, however, anxious about its threats and coping appraisals. The identified significant constructs in the study may help to increase efficiency, quality of services, quality patient care delivery, and satisfactory user satisfaction among healthcare professionals. The implantation and effective utilization of telemedicine services in the selected hospitals will aid as a strategy to eradicate hardships in healthcare services delivery. The service will help attain universal health access coverage to all populace. This study contributes to empirical knowledge by identifying the vital factors influencing health professionals’ behavioral intentions to adopt telemedicine services. The study will also help stakeholders of healthcare to formulate better policies towards telemedicine service usage.Keywords: telemedicine service, perceived usefulness, perceived ease of use, management strategies, security threats
Procedia PDF Downloads 1405521 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle
Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu
Abstract:
Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle
Procedia PDF Downloads 1435520 Efficacy of Learning: Digital Sources versus Print
Authors: Rahimah Akbar, Abdullah Al-Hashemi, Hanan Taqi, Taiba Sadeq
Abstract:
As technology continues to develop, teaching curriculums in both schools and universities have begun adopting a more computer/digital based approach to the transmission of knowledge and information, as opposed to the more old-fashioned use of textbooks. This gives rise to the question: Are there any differences in learning from a digital source over learning from a printed source, as in from a textbook? More specifically, which medium of information results in better long-term retention? A review of the confounding factors implicated in understanding the relationship between learning from the two different mediums was done. Alongside this, a 4-week cohort study involving 76 1st year English Language female students was performed, whereby the participants were divided into 2 groups. Group A studied material from a paper source (referred to as the Print Medium), and Group B studied material from a digital source (Digital Medium). The dependent variables were grading of memory recall indexed by a 4 point grading system, and total frequency of item repetition. The study was facilitated by advanced computer software called Super Memo. Results showed that, contrary to prevailing evidence, the Digital Medium group showed no statistically significant differences in terms of the shift from Remember (Episodic) to Know (Semantic) when all confounding factors were accounted for. The shift from Random Guess and Familiar to Remember occurred faster in the Digital Medium than it did in the Print Medium.Keywords: digital medium, print medium, long-term memory recall, episodic memory, semantic memory, super memo, forgetting index, frequency of repetitions, total time spent
Procedia PDF Downloads 2895519 The Influence of Cognitive Load in the Acquisition of Words through Sentence or Essay Writing
Authors: Breno Barrreto Silva, Agnieszka Otwinowska, Katarzyna Kutylowska
Abstract:
Research comparing lexical learning following the writing of sentences and longer texts with keywords is limited and contradictory. One possibility is that the recursivity of writing may enhance processing and increase lexical learning; another possibility is that the higher cognitive load of complex-text writing (e.g., essays), at least when timed, may hinder the learning of words. In our study, we selected 2 sets of 10 academic keywords matched for part of speech, length (number of characters), frequency (SUBTLEXus), and concreteness, and we asked 90 L1-Polish advanced-level English majors to use the keywords when writing sentences, timed (60 minutes) or untimed essays. First, all participants wrote a timed Control essay (60 minutes) without keywords. Then different groups produced Timed essays (60 minutes; n=33), Untimed essays (n=24), or Sentences (n=33) using the two sets of glossed keywords (counterbalanced). The comparability of the participants in the three groups was ensured by matching them for proficiency in English (LexTALE), and for few measures derived from the control essay: VocD (assessing productive lexical diversity), normed errors (assessing productive accuracy), words per minute (assessing productive written fluency), and holistic scores (assessing overall quality of production). We measured lexical learning (depth and breadth) via an adapted Vocabulary Knowledge Scale (VKS) and a free association test. Cognitive load was measured in the three essays (Control, Timed, Untimed) using normed number of errors and holistic scores (TOEFL criteria). The number of errors and essay scores were obtained from two raters (interrater reliability Pearson’s r=.78-91). Generalized linear mixed models showed no difference in the breadth and depth of keyword knowledge after writing Sentences, Timed essays, and Untimed essays. The task-based measurements found that Control and Timed essays had similar holistic scores, but that Untimed essay had better quality than Timed essay. Also, Untimed essay was the most accurate, and Timed essay the most error prone. Concluding, using keywords in Timed, but not Untimed, essays increased cognitive load, leading to more errors and lower quality. Still, writing sentences and essays yielded similar lexical learning, and differences in the cognitive load between Timed and Untimed essays did not affect lexical acquisition.Keywords: learning academic words, writing essays, cognitive load, english as an L2
Procedia PDF Downloads 735518 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech
Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori
Abstract:
Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing
Procedia PDF Downloads 1325517 A Collaborative Action Research by Using the Children’s School Success Plus Curriculum Framework to Support Early Childhood Education/Early Childhood Special Education Teachers to Build a Professional Learning Community
Authors: Chiou-Shiue Ko, Pei-Fang Wu, Shu-hsien Tseng
Abstract:
The researchers adopted two-year action research to investigate the professional collaborative process and development in learning communities for both early childhood and early childhood special education teachers on implementing the children’s school success curriculum framework. The participating teachers were recruited from three preschool sites for this current study. Research data were collected from multiple methods in order to ensure the data quality and validity. The results showed that participating educators had achieved professional growth, and they became more aware of teaching intentions and the preparation for the curriculum. Teachers in this research become more child-focused in teaching and create opportunities for children to participate in classroom activities and routines. The researcher also finds teachers’ participation levels were driven by each individual personality; during professional growth, some teachers are more proactive and reflective, and some are not. According to the research findings, suggestions for future studies and practices are provided.Keywords: children’s school success curriculum framework, early childhood special education, preschool education, professional learning community
Procedia PDF Downloads 1435516 The Desire to Know: Arnold’s Contribution to a Psychological Conceptualization of Academic Motivation
Authors: F. Ruiz-Fuster
Abstract:
Arnold’s redefinition of human motives can sustain a psychology of education which emphasizes the beauty of knowledge and the exercise of intellectual functions. Thus, education instead of focusing on skills and learning by doing would be centered on ‘the widest reaches of the human spirit’. One way to attain it is by developing children’s inherent interest. Arnold takes into account the fact that the desire to know is the inherent interest which leads students to explore and learn. She also emphasizes the need of exercising human functions as thinking, judging and reasoning. According to Arnold, the influence of psychological theories of motivation in education has derived in considering that all learning and school tasks should derive from children’s needs and impulses. The desire to know and the curiosity have not been considered as basic and active as any instinctive drive or basic need, so there has been an attempt to justify and understand how biological drives guide student’s learning. However, understanding motives and motivation not as a drive, an instinct or an impulse guided by our basic needs, but as a want that leads to action can help to understand, from a psychological perspective, how teachers can motivate students to learn, strengthening their desire and interest to reason and discover the whole new world of knowledge.Keywords: academic motivation, interests, desire to know, educational psychology, intellectual functions
Procedia PDF Downloads 1525515 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 1285514 Leveraging Engineering Education and Industrial Training: Learning from a Case Study
Authors: Li Wang
Abstract:
The explosive of technology advances has opened up many avenues of career options for engineering graduates. Hence, how relevant their learning at university is very much dependent on their actual jobs. Bridging the gap between education and industrial practice is important, but it also becomes evident how both engineering education and industrial training can be leveraged at the same time and balance between what students should grasp at university and what they can be continuously trained at the working environment. Through a case study of developing a commercial product, this paper presents the required level of depth of technical knowledge and skills for some typical engineering jobs (for mechanical/materials engineering). It highlights the necessary collaboration for industry, university, and accreditation bodies to work together to nurture the next generation of engineers.Keywords: leverage, collaboration, career, industry, engineering education
Procedia PDF Downloads 985513 Challenge Based Learning Approach for a Craft Mezcal Kiln Energetic Redesign
Authors: Jonathan A. Sánchez Muñoz, Gustavo Flores Eraña, Juan M. Silva
Abstract:
Mexican Mezcal industry has reached attention during the last decade due to it has been a popular beverage demanded by North American and European markets, reaching popularity due to its crafty character. Despite its wide demand, productive processes are still made with rudimentary equipment, and there is a lack of evidence to improve kiln energy efficiency. Tec21 is a challenge-based learning curricular model implemented by Tecnológico de Monterrey since 2019, where each formation unit requires an industrial partner. “Problem processes solution” is a formation unity designed for mechatronics engineers, where students apply the acquired knowledge in thermofluids and apply electronic. During five weeks, students are immersed in an industrial problem to obtain a proper level of competencies according to formation unit designers. This work evaluates the competencies acquired by the student through qualitative research methodology. Several evaluation instruments (report, essay, and poster) were selected to evaluate etic argumentation, principles of sustainability, implemented actions, process modelling, and redesign feasibility.Keywords: applied electronic, challenge based learning, competencies, mezcal industry, thermofluids
Procedia PDF Downloads 1215512 Empowering Business Students with Intercultural Communicative Competence through Multicultural Literature
Authors: Dorsaf Ben Malek
Abstract:
The function of culture in language teaching changed because of globalization and the latest technologies. English became a lingua franca which resulted in altering the teaching objectives. The re-evaluation of cultural awareness is one of them. Business English teaching has also been subject to all these changes. It is therefore a wrong idea if we try to consider it as a diffusion of unlimited listing of lexis, diagrams, charts, and statistics. In fact, business students’ future career will require business terminology together with intercultural communicative competence (ICC) to handle different multicultural encounters and contribute to the international community. The first part of this paper is dedicated to the necessity of empowering business students with intercultural communicative competence and the second turns around the potential of multicultural literature in implementing ICC in business English teaching. This was proved through a qualitative action research done on a group of Tunisian MA business students. It was an opportunity to discover the potential of multicultural literature together with inquiry-based learning in enhancing business students’ intercultural communicative competence. Data were collected through classroom observations, journals and semi-structured interviews. Results were in favour of using multicultural literature to enhance business students’ ICC. In addition, the short story may be a motivating tool to read literature, and inquiry-based learning can be an effective approach to teaching literature.Keywords: intercultural communicative competence, multicultural literature, short stories, inquiry-based learning
Procedia PDF Downloads 3345511 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa
Authors: Ayanda P. Deliwe, Storm B. Watson
Abstract:
The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources
Procedia PDF Downloads 695510 Trauma: Constructivist Theoretical Framework
Authors: Wendi Dunham, Kimberly Floyd
Abstract:
The constructivist approach to learning is a theoretical orientation that posits that individuals create their own understanding and knowledge of the world through their experiences and interactions. This approach emphasizes that learning is an active process and that individuals are not passive recipients when constructing their understanding of their world. When used concurrently with trauma-informed practices, a constructivist approach can inform the development of a framework for students and teachers that supports their social, emotional, and mental health in addition to enabling academic success. This framework can be applied to teachers and students. When applied to teachers, it can be used to achieve purposeful coping mechanisms through restorative justice and dispositional mindfulness. When applied to students, the framework can implement proactive, student-based practices such as Response to Intervention (RtI) and the 4 Rs to connect resiliency and intervention to academic learning. Using a constructivist, trauma-informed framework can provide students with a greater sense of control and agency over their trauma experiences and impart confidence in achieving school success.Keywords: trauma, trauma informed practices in education, constructivist theory framework, school responses to trauma, trauma informed supports for teachers, trauma informed strategies for students, restorative justice, mindfulness, response to intervention, the 4 R's, resiliency
Procedia PDF Downloads 465509 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery
Authors: Jan-Peter Mund, Christian Kind
Abstract:
In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data
Procedia PDF Downloads 895508 Enhancing Teaching of Engineering Mathematics
Authors: Tajinder Pal Singh
Abstract:
Teaching of mathematics to engineering students is an open ended problem in education. The main goal of mathematics learning for engineering students is the ability of applying a wide range of mathematical techniques and skills in their engineering classes and later in their professional work. Most of the undergraduate engineering students and faculties feels that no efforts and attempts are made to demonstrate the applicability of various topics of mathematics that are taught thus making mathematics unavoidable for some engineering faculty and their students. The lack of understanding of concepts in engineering mathematics may hinder the understanding of other concepts or even subjects. However, for most undergraduate engineering students, mathematics is one of the most difficult courses in their field of study. Most of the engineering students never understood mathematics or they never liked it because it was too abstract for them and they could never relate to it. A right balance of application and concept based teaching can only fulfill the objectives of teaching mathematics to engineering students. It will surely improve and enhance their problem solving and creative thinking skills. In this paper, some practical (informal) ways of making mathematics-teaching application based for the engineering students is discussed. An attempt is made to understand the present state of teaching mathematics in engineering colleges. The weaknesses and strengths of the current teaching approach are elaborated. Some of the causes of unpopularity of mathematics subject are analyzed and a few pragmatic suggestions have been made. Faculty in mathematics courses should spend more time discussing the applications as well as the conceptual underpinnings rather than focus solely on strategies and techniques to solve problems. They should also introduce more ‘word’ problems as these problems are commonly encountered in engineering courses. Overspecialization in engineering education should not occur at the expense of (or by diluting) mathematics and basic sciences. The role of engineering education is to provide the fundamental (basic) knowledge and to teach the students simple methodology of self-learning and self-development. All these issues would be better addressed if mathematics and engineering faculty join hands together to plan and design the learning experiences for the students who take their classes. When faculties stop competing against each other and start competing against the situation, they will perform better. Without creating any administrative hassles these suggestions can be used by any young inexperienced faculty of mathematics to inspire engineering students to learn engineering mathematics effectively.Keywords: application based learning, conceptual learning, engineering mathematics, word problem
Procedia PDF Downloads 2325507 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 1125506 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City
Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng
Abstract:
Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.Keywords: human perception, public space quality, deep learning, negative elements, street images
Procedia PDF Downloads 1155505 Mobile Phones in Saudi Arabian EFL Classrooms
Authors: Srinivasa Rao Idapalapati, Manssour Habbash
Abstract:
As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology to the service of learning and teaching appears to be both self-evident and unavoidable. To this end, this study explores the reasons for the reluctance of teachers in Saudi Arabia to use mobiles in EFL (English as a Foreign Language) classes for teaching and learning purposes. The main objective of this study is a qualitative analysis of the responses of the views of the teachers at a university in Saudi Arabia about the use of mobile phones in classrooms for educational purposes. Driven by the hypothesis that the teachers in Saudi Arabian universities aren’t prepared well enough to use mobile phones in classrooms for educational purposes, this study examines the data obtained through a questionnaire provided to about hundred teachers working at a university in Saudi Arabia through convenient sampling method. The responses are analyzed by qualitative interpretive method and found that teachers and the students are in confusion whether to use mobiles, and need some training sessions on the use of mobile phones in classrooms for educational purposes. The outcome of the analysis is discussed in light of the concerns bases adoption model and the inferences are provided in a descriptive mode.Keywords: mobile assisted language learning, technology adoption, classroom instruction, concerns based adoption model
Procedia PDF Downloads 3645504 A Comparative Study on the Development of Webquest and Online Treasure Hunt as Instructional Materials in Teaching Motion in One Dimension for Grade VII Students
Authors: Mark Anthony Burdeos, Kara Ella Catoto, Alraine Pauyon, Elesar Malicoban
Abstract:
This study sought to develop, validate, and implement the WebQuest and Online Treasure Hunt as instructional materials in teaching Motion in One Dimension for Grade 7 students and to determine its effects on the students’ conceptual learning, performance and attitude towards Physics. In the development stage, several steps were taken, such as the actual planning and developing the WebQuest and Online Treasure Hunt and making the lesson plan and achievement test. The content and the ICT(Information Communications Technology) effect of the developed instructional materials were evaluated by the Content and ICT experts using adapted evaluation forms. During the implementation, pretest and posttest were administered to determine students’ performance, and pre-attitude and post-attitude tests to investigate students’ attitudes towards Physics before and after the WebQuest and Online Treasure Hunt activity. The developed WebQuest and Online Treasure Hunt passed the validation of Content experts and ICT experts. Students acquired more knowledge on Motion in One Dimension and gained a positive attitude towards Physics after the utilization of WebQuest and Online Treasure Hunt, evidenced significantly higher scores in posttest compared to pretest and higher ratings in post-attitude than pre-attitude. The developed WebQuest and Online Treasure Hunt were proven good in quality and effective materials in teaching Motion in One Dimension and developing a positive attitude towards Physics. However, students performed better in the pretest and posttest and rated higher in the pre-attitude and post-attitude tests in the WebQuest than in the Online Treasure Hunt. This study would provide significant learning experiences to the students that would be useful in building their knowledge, in understanding concepts in a most understandable way, in exercising to use their higher-order thinking skills, and in utilizing their capabilities and abilities to relate Physics topics to real-life situations thereby, students can have in-depth learning about Motion in One Dimension. This study would help teachers to enhance the teaching strategies as the two instructional materials provide interesting, engaging, and innovative teaching-learning experiences for the learners, which are helpful in increasing the level of their motivation and participation in learning Physics. In addition, it would provide information as a reference in using technology in the classroom and to determine which of the two instructional materials, WebQuest and Online Treasure Hunt, is suitable for the teaching-learning process in Motion in One Dimension.Keywords: ICT integration, motion in one dimension, online treasure hunt, Webquest
Procedia PDF Downloads 1765503 The Interplay of Factors Affecting Learning of Introductory Programming: A Comparative Study of an Australian and an Indian University
Authors: Ritu Sharma, Haifeng Shen
Abstract:
Teaching introductory programming is a challenging task in tertiary education and various factors are believed to have influence on students’ learning of programming. However, these factors were largely studied independently in a chosen context. This paper aims to investigate whether interrelationships exist among the factors and whether the interrelationships are context-dependent. In this empirical study, two universities were chosen from two continents, which represent different cultures, teaching methodologies, assessment criteria and languages used to teach programming in west and east worlds respectively. The results reveal that some interrelationships are common across the two different contexts, while others appear context-dependent.Keywords: introductory programming, tertiary education, factors, interrelationships, context, empirical study
Procedia PDF Downloads 3635502 A Study of the Frequency of Individual Support for the Pupils With Developmental Disabilities or Suspected Developmental Disabilities in Regular Japanese School Classes - From a Questionnaire Survey of Teachers
Authors: Maho Komura
Abstract:
The purpose of this study was to determine from a questionnaire survey of teachers the status of implementation of individualized support for the pupils with suspected developmental disabilities in regular elementary school classes in Japan. In inclusive education, the goal is for all pupils to learn in the same place as much as possible by receiving the individualized support they need. However, in the Japanese school culture, strong "homogeneity" sometimes surfaces, and it is pointed out that it is difficult to provide individualized support from the viewpoint of formal equality. Therefore, we decided to conduct this study in order to examine whether there is a difference in the frequency of implementation depending on the content of individualized support and to consider the direction of future individualized support. The subjects of the survey were 196 public elementary school teachers who had been in charge of regular classes within the past five years. In the survey, individualized support was defined as individualized consideration including rational consideration, and did not include support for the entire class or all pupils enrolled in the class (e.g., reducing the amount of homework for pupils who have trouble learning, changing classroom rules, etc.). (e.g., reducing the amount of homework for pupils with learning difficulties, allowing pupils with behavioral concerns to use the library or infirmary when they are unstable). The respondents were asked to choose one answer from four options, ranging from "very much" to "not at all," regarding the degree to which they implemented the nine individual support items that were set up with reference to previous studies. As a result, it became clear that the majority of teachers had pupils with developmental disabilities or pupils who require consideration in terms of learning and behavior, and that the majority of teachers had experience in providing individualized support to these pupils. Investigating the content of the individualized support that had been implemented, it became clear that the frequency with which it was implemented varied depending on the individualized support. Individualized support that allowed pupils to perform the same learning tasks was implemented more frequently, but individualized support that allowed different learning tasks or use of places other than the classroom was implemented less frequently. It was suggested that flexible support methods tailored to each pupil may not have been considered.Keywords: inclusive education, ndividualized support, regular class, elementary school
Procedia PDF Downloads 1305501 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 1815500 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 143