Search results for: frequency estimation
2815 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation
Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo
Abstract:
This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology
Procedia PDF Downloads 822814 A Comparison of Two and Three Dimensional Motion Capture Methodologies in the Analysis of Underwater Fly Kicking Kinematics
Authors: Isobel M. Thompson, Dorian Audot, Dominic Hudson, Martin Warner, Joseph Banks
Abstract:
Underwater fly kick is an essential skill in swimming, which can have a considerable impact upon overall race performance in competition, especially in sprint events. Reduced wave drags acting upon the body under the surface means that the underwater fly kick will potentially be the fastest the swimmer is travelling throughout the race. It is therefore critical to understand fly kicking techniques and determining biomechanical factors involved in the performance. Most previous studies assessing fly kick kinematics have focused on two-dimensional analysis; therefore, the three-dimensional elements of the underwater fly kick techniques are not well understood. Those studies that have investigated fly kicking techniques using three-dimensional methodologies have not reported full three-dimensional kinematics for the techniques observed, choosing to focus on one or two joints. There has not been a direct comparison completed on the results obtained using two-dimensional and three-dimensional analysis, and how these different approaches might affect the interpretation of subsequent results. The aim of this research is to quantify the differences in kinematics observed in underwater fly kicks obtained from both two and three-dimensional analyses of the same test conditions. In order to achieve this, a six-camera underwater Qualisys system was used to develop an experimental methodology suitable for assessing the kinematics of swimmer’s starts and turns. The cameras, capturing at a frequency of 100Hz, were arranged along the side of the pool spaced equally up to 20m creating a capture volume of 7m x 2m x 1.5m. Within the measurement volume, error levels were estimated at 0.8%. Prior to pool trials, participants completed a landside calibration in order to define joint center locations, as certain markers became occluded once the swimmer assumed the underwater fly kick position in the pool. Thirty-four reflective markers were placed on key anatomical landmarks, 9 of which were then removed for the pool-based trials. The fly-kick swimming conditions included in the analysis are as follows: maximum effort prone, 100m pace prone, 200m pace prone, 400m pace prone, and maximum pace supine. All trials were completed from a push start to 15m to ensure consistent kick cycles were captured. Both two-dimensional and three-dimensional kinematics are calculated from joint locations, and the results are compared. Key variables reported include kick frequency and kick amplitude, as well as full angular kinematics of the lower body. Key differences in these variables obtained from two-dimensional and three-dimensional analysis are identified. Internal rotation (up to 15º) and external rotation (up to -28º) were observed using three-dimensional methods. Abduction (5º) and adduction (15º) were also reported. These motions are not observed in the two-dimensional analysis. Results also give an indication of different techniques adopted by swimmers at various paces and orientations. The results of this research provide evidence of the strengths of both two dimensional and three dimensional motion capture methods in underwater fly kick, highlighting limitations which could affect the interpretation of results from both methods.Keywords: swimming, underwater fly kick, performance, motion capture
Procedia PDF Downloads 1392813 Stock Price Prediction with 'Earnings' Conference Call Sentiment
Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu
Abstract:
Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.Keywords: earnings call script, random forest, sentiment analysis, stock price prediction
Procedia PDF Downloads 2962812 Energization of the Ions by EMIC Waves using MMS Observation
Authors: Abid Ali Abid
Abstract:
Electromagnetic ion cyclotron waves have been playing a significant role in inner magnetosphere, and their proton band has been detected using the Magnetospheric-Multiscale (MMS) satellite observations in the inner magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. Thermal anisotropy of hot protons initiates the waves. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these formerly invisible protons are now visible. The EMIC waves, whose frequency ranges from 0.001 Hz to 5 Hz in the inner magnetosphere and received considerable attention for energy transport across the magnetosphere. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases.Keywords: electromagnetic ion cyclotron waves, magnetospheric-multiscale (MMS) satellite, cold protons, inner magnetosphere
Procedia PDF Downloads 912811 A New Design Methodology for Partially Reconfigurable Systems-on-Chip
Authors: Roukaya Dalbouchi, Abdelkrin Zitouni
Abstract:
In this paper, we propose a novel design methodology for Dynamic Partial Reconfigurable (DPR) system. This type of system has the property of being able to be modified after its design and during its execution. The suggested design methodology is generic in terms of granularity, number of modules, and reconfigurable region and suitable for any type of modern application. It is based on the interconnection between several design stages. The recommended methodology represents a guide for the design of DPR architectures that meet compromise reconfiguration/performance. To validate the proposed methodology, we use as an application a video watermarking. The comparison result shows that the proposed methodology supports all stages of DPR architecture design and characterized by a high abstraction level. It provides a dynamic/partial reconfigurable architecture; it guarantees material efficiency, the flexibility of reconfiguration, and superior performance in terms of frequency and power consumption.Keywords: dynamically reconfigurable system, block matching algorithm, partial reconfiguration, motion vectors, video watermarking
Procedia PDF Downloads 992810 Design and Analysis of Proximity Fed Single Band Microstrip Patch Antenna with Parasitic Lines
Authors: Inderpreet Kaur, Sukhjit Kaur, Balwinder Singh Sohi
Abstract:
The design proposed in this paper mainly focuses on implementation of a single feed compact rectangular microstrip patch antenna (MSA) for single band application. The antenna presented here also works in dual band but its best performance has been obtained when optimised to work in single band mode. In this paper, a new feeding structure is applied in the patch antenna design to overcome undesirable features of the earlier multilayer feeding structures while maintaining their interesting features.To make the proposed antenna more efficient the optimization of the antenna design parameters have been done using HFSS’s optometric. For the proposed antenna one resonant frequency has been obtained at 6.03GHz, with Bandwidth of 167MHz and return loss of -33.82db. The characteristics of the designed structure are investigated by using FEM based electromagnetic solver.Keywords: bandwidth, retun loss, parasitic lines, microstrip antenna
Procedia PDF Downloads 4682809 Static and Dynamic Analysis of Timoshenko Microcantilever Using the Finite Element Method
Authors: Mohammad Tahmasebipour, Hosein Salarpour
Abstract:
Micro cantilevers are one of the components used in the manufacture of micro-electromechanical systems. Epoxy microcantilevers have a variety of applications in the manufacture of micro-sensors and micro-actuators. In this paper, the Timoshenko Micro cantilever was statically and dynamically analyzed using the finite element method. First, all boundary conditions and initial conditions governing micro cantilevers were considered. The effect of size on the deflection, angle of rotation, natural frequencies, and mode shapes were then analyzed and evaluated under different frequencies. It was observed that an increased micro cantilever thickness reduces the deflection, rotation, and resonant frequency. A good agreement was observed between our results and those obtained by the couple stress theory, the classical theory, and the strain gradient elasticity theory.Keywords: microcantilever, microsensor; epoxy, dynamic behavior, static behavior, finite element method
Procedia PDF Downloads 4192808 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture
Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri
Abstract:
In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility
Procedia PDF Downloads 1432807 Design and Optimization of a Compact Parallel-Coupled Microstrip Bandpass Filter for 12-14 Ghz Wireless Applications
Authors: Kifetewe Yisfalem Tigistu, Abdul Karim Patwary, Khalil Ud Din, Shanko Demise Daniel
Abstract:
This paper presents a compact bandpass filter design for wireless communication systems using coupled microstrip lines operating over 12–14 GHz. A Butterworth prototype ensures a flat passband and steep stopband roll-off. The filter, implemented on an FR4 substrate (εr = 4.4, H = 1.27 mm), targets an insertion loss greater than -8 dB and a return loss below -10 dB. Key design parameters, including the width, length, and spacing of the coupled lines, are determined through calculations and simulations. The schematic circuit design is converted into a layout and optimized using electromagnetic simulations in ADS software. The final design meets performance goals for insertion loss, return loss, selectivity, and stopband rejection, proving its suitability for high-frequency wireless applications.Keywords: bandpass filter, Butterworth filter, coupled microstrip lines, FR4 substrate
Procedia PDF Downloads 142806 Comparative Methods for Speech Enhancement and the Effects on Text-Independent Speaker Identification Performance
Authors: R. Ajgou, S. Sbaa, S. Ghendir, A. Chemsa, A. Taleb-Ahmed
Abstract:
The speech enhancement algorithm is to improve speech quality. In this paper, we review some speech enhancement methods and we evaluated their performance based on Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862). All method was evaluated in presence of different kind of noise using TIMIT database and NOIZEUS noisy speech corpus.. The noise was taken from the AURORA database and includes suburban train noise, babble, car, exhibition hall, restaurant, street, airport and train station noise. Simulation results showed improved performance of speech enhancement for Tracking of non-stationary noise approach in comparison with various methods in terms of PESQ measure. Moreover, we have evaluated the effects of the speech enhancement technique on Speaker Identification system based on autoregressive (AR) model and Mel-frequency Cepstral coefficients (MFCC).Keywords: speech enhancement, pesq, speaker recognition, MFCC
Procedia PDF Downloads 4262805 FPGA Based IIR Filter Design Using MAC Algorithm
Authors: Rajesh Mehra, Bharti Thakur
Abstract:
In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.Keywords: Butterworth filter, DSP, IIR, MAC, FPGA
Procedia PDF Downloads 3912804 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India
Authors: Ajai Singh
Abstract:
Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation
Procedia PDF Downloads 3762803 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 7852802 Monthly Labor Forces Surveys Portray Smooth Labor Markets and Bias Fixed Effects Estimation: Evidence from Israel’s Transition from Quarterly to Monthly Surveys
Authors: Haggay Etkes
Abstract:
This study provides evidence for the impact of monthly interviews conducted for the Israeli Labor Force Surveys (LFSs) on estimated flows between labor force (LF) statuses and on coefficients in fixed-effects estimations. The study uses the natural experiment of parallel interviews for the quarterly and the monthly LFSs in Israel in 2011 for demonstrating that the Labor Force Participation (LFP) rate of Jewish persons who participated in the monthly LFS increased between interviews, while in the quarterly LFS it decreased. Interestingly, the estimated impact on the LFP rate of self-reporting individuals is 2.6–3.5 percentage points while the impact on the LFP rate of individuals whose data was reported by another member of their household (a proxy), is lower and statistically insignificant. The relative increase of the LFP rate in the monthly survey is a result of a lower rate of exit from the LF and a somewhat higher rate of entry into the LF relative to these flows in the quarterly survey. These differing flows have a bearing on labor search models as the monthly survey portrays a labor market with less friction and a “steady state” LFP rate that is 5.9 percentage points higher than the quarterly survey. The study also demonstrates that monthly interviews affect a specific group (45–64 year-olds); thus the sign of coefficient of age as an explanatory variable in fixed-effects regressions on LFP is negative in the monthly survey and positive in the quarterly survey.Keywords: measurement error, surveys, search, LFSs
Procedia PDF Downloads 2722801 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe
Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero
Abstract:
Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin
Procedia PDF Downloads 782800 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1742799 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors
Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung
Abstract:
The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling
Procedia PDF Downloads 5712798 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1542797 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 3902796 Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System
Authors: Dinebari Akpee, Friday Aabe Gaage, Florence Fred Nwaigwu
Abstract:
Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation.Keywords: flood disaster, risk maps, geographic information system, hazards
Procedia PDF Downloads 2352795 End-to-End Performance of MPPM in Multihop MIMO-FSO System Over Dependent GG Atmospheric Turbulence Channels
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of decode and forward (DF) multihop free space optical (FSO) scheme deploying multiple input multiple output (MIMO) configuration under gamma-gamma (GG) statistical distribution, that adopts M-ary pulse position modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of symbol-error rates (SERs) respectively. The probability density function (PDF)’s closed-form formula is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, multiple-input multiple-output, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 2532794 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints
Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed
Abstract:
Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)
Procedia PDF Downloads 5792793 Reducing Component Stress during Encapsulation of Electronics: A Simulative Examination of Thermoplastic Foam Injection Molding
Authors: Constantin Ott, Dietmar Drummer
Abstract:
The direct encapsulation of electronic components is an effective way of protecting components against external influences. In addition to achieving a sufficient protective effect, there are two other big challenges for satisfying the increasing demand for encapsulated circuit boards. The encapsulation process should be both suitable for mass production and offer a low component load. Injection molding is a method with good suitability for large series production but also with typically high component stress. In this article, two aims were pursued: first, the development of a calculation model that allows an estimation of the occurring forces based on process variables and material parameters. Second, the evaluation of a new approach for stress reduction by means of thermoplastic foam injection molding. For this purpose, simulation-based process data was generated with the Moldflow simulation tool. Based on this, component stresses were calculated with the calculation model. At the same time, this paper provided a model for estimating the forces occurring during overmolding and derived a solution method for reducing these forces. The suitability of this approach was clearly demonstrated and a significant reduction in shear forces during overmolding was achieved. It was possible to demonstrate a process development that makes it possible to meet the two main requirements of direct encapsulation in addition to a high protective effect.Keywords: encapsulation, stress reduction, foam-injection-molding, simulation
Procedia PDF Downloads 1312792 Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors
Authors: Alexander Sutor, David Demetz
Abstract:
We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors.Keywords: wireless sensors, photoreactor, internal illumination, wireless power
Procedia PDF Downloads 1582791 European and Scandinavian Tourists' Perceptions and Desire to Travel in Ranong Province
Authors: Wipanee Maen-In
Abstract:
The objectives of the research are i) to study the motivations of european and scandinavian tourists who select Ranong province as their destinations ii) to study their perception towards the Ranong Province and iii) to study the visitors’ decision making while visiting Ranong Province. The samples of the study are 220 European and Scandinavian tourists’ visitors at the Ranong by accidental sampling and in clouding online questionnaires for 53 sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the motivation level of the visitors is considered prominent, the average score of the motivational factors ranks higher than the average of the pull factors to visit the Ranong province when considering the factors analysis, the research shows that the reason that most tourists visit the Ranong is for relaxation while the purity of the natural mineral hot springs is the most important pull factor.Keywords: European and Scandinavian, Ranong province, tourists’ perceptions, visitors’ decision making
Procedia PDF Downloads 2342790 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management
Authors: Vani Chintapally
Abstract:
The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating
Procedia PDF Downloads 3882789 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.Keywords: TDNN, neural networks, noise, speech recognition
Procedia PDF Downloads 2932788 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles
Authors: Andreas Gohs, Reinhold Kosfeld
Abstract:
This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion
Procedia PDF Downloads 1732787 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory
Procedia PDF Downloads 4522786 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.Keywords: concrete, mixing ratio, textile, TRC
Procedia PDF Downloads 408