Search results for: multiple input multiple output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8069

Search results for: multiple input multiple output

5099 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413
5098 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein

Authors: Y. Ruchi, A. Prerna, S. Deepshikha

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.

Keywords: ALS, binding site, homology modeling, neuronal degeneration

Procedia PDF Downloads 389
5097 Research of the Rotation Magnetic Field Current Driven Effect on Pulsed Plasmoid Acceleration of Electric Propulsion

Authors: X. F. Sun, X. D. Wen, L. J. Liu, C. C. Wu, Y. H. Jia

Abstract:

The field reversed closed magnetic field configuration plasmoid has a potential for large thrust and high power propulsion missions such as deep space exploration due to its high plasma density and larger azimuthal current, which will be a most competitive program for the next generation electric propulsion technology. Moreover, without the electrodes, it also has a long lifetime. Thus, the research on this electric propulsion technology is quite necessary. The plasmoid will be formatted and accelerated by applying a rotation magnetic field (RMF) method. And, the essence of this technology lies on the generation of the azimuthal electron currents driven by RMF. Therefore, the effect of RMF current on the plasmoid acceleration efficiency is a concerned problem. In the paper, the influences of the penetration process of RMF in plasma, the relations of frequency and amplitude of input RF power with current strength and the RMF antenna configuration on the plasmoid acceleration efficiency will be given by a two-fluid numerical simulation method. The results show that the radio-frequency and input power have remarkable influence on the formation and acceleration of plasmoid. These results will provide useful advice for the development, and optimized designing of field reversed configuration plasmoid thruster.

Keywords: rotation magnetic field, current driven, plasma penetration, electric propulsion

Procedia PDF Downloads 116
5096 A Critical Evaluation of the Factors that Influence Visitor Engagement with U.K. Slavery Heritage Museums: A Passive Symbolic Netnographic Study

Authors: Shemroy Roberts

Abstract:

Despite minor theoretical contributions in slavery heritage tourism research that have commented on the demand-side perspective, visitor behavior and engagement with slavery heritage attractions remain unexplored. Thus, there is a need for empirical studies and theoretical knowledge to understand visitor engagement with slavery heritage attractions, particularly U.K. slavery heritage museums. The purpose of this paper is to critically evaluate the factors that influence visitor engagement with U.K. slavery heritage museums. This qualitative research utilizes a passive symbolic ethnographic methodology. Seven U.K. slavery heritage museums will be used to collect data through unobtrusive internet-mediated observations of TripAdvisor reviews and online semi-structured interviews with managers and curators. Preliminary findings indicate that social media, prior knowledge, multiple motivations, cultural capital, and the design and layout of exhibits influence visitor engagement with slavery heritage museums. This research contributes to an understanding of visitor engagement with U.K. slavery heritage museums. The findings of this paper will provide insights into the factors that influence visitor engagement with U.K. slavery heritage museums to managers, curators, and decision-makers responsible for designing and managing those attractions. Therefore, the results of this paper will enable museum professionals to better manage visitor engagement with slavery heritage museums.

Keywords: museums, netnography, slavery, visitor engagement

Procedia PDF Downloads 323
5095 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers

Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen

Abstract:

In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.

Keywords: centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA

Procedia PDF Downloads 392
5094 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 384
5093 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing

Authors: Aldona Kluczek

Abstract:

In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.

Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment

Procedia PDF Downloads 247
5092 Numinous Luminosity: A Mixed Methods Study of Mystical Light Experiences

Authors: J. R. Dinsmore, R. W. Hood

Abstract:

Experiences of a divine or mystical light are frequently reported in religious/spiritual experiences today, most notably in the context of mystical and near-death experiences. Light of a transcendental nature and its experiences of it are also widely present and highly valued in many religious and mystical traditions. Despite the significance of this luminosity to the topic of religious experience, efforts to study the phenomenon empirically have been minimal and scattered. This mixed methods study developed and validated a questionnaire for the measurement of numinous luminosity experience and investigated the dimensions and effects of this novel construct using both quantitative and qualitative methodologies. A sequential explanatory design (participant selection model) was used, which involved a scale development phase, followed by a correlational study testing hypotheses about its effects on beliefs and well-being derived from the literature, and lastly, a phenomenological study of a sample selected from the correlational phase results. The outcomes of the study are a unified theoretical model of numinous luminosity experience across multiple experiential contexts, initial correlational findings regarding the possible mechanism of its reported positive transformational effects, and a valid and reliable instrument for its further empirical study.

Keywords: religious experience, mystical experience, near-death experience, scale development, questionnaire, divine light, mystical light, mystical luminosity

Procedia PDF Downloads 95
5091 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 503
5090 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 346
5089 Cloning and Expression of Human Interleukin 15: A Promising Candidate for Cytokine Immunotherapy

Authors: Sadaf Ilyas

Abstract:

Recombinant cytokines have been employed successfully as potential therapeutic agent. Some cytokine therapies are already used as a part of clinical practice, ranging from early exploratory trials to well established therapies that have already received approval. Interleukin 15 is a pleiotropic cytokine having multiple roles in peripheral innate and adaptive immune cell function. It regulates the activation, proliferation and maturation of NK cells, T-cells, monocytes/macrophages and granulocytes, and the interactions between them thus acting as a bridge between innate and adaptive immune responses. Unraveling the biology of IL-15 has revealed some interesting surprises that may point toward some of the first therapeutic applications for this cytokine. In this study, the human interleukin 15 gene was isolated, amplified and ligated to a TA vector which was then transfected to a bacterial host, E. coli Top10F’. The sequence of cloned gene was confirmed and it showed 100% homology with the reported sequence. The confirmed gene was then subcloned in pET Expression system to study the IPTG induced expression of IL-15 gene. Positive expression was obtained for number of clones that showed 15 kd band of IL-15 in SDS-PAGE analysis, indicating the successful strain development that can be studied further to assess the potential therapeutic intervention of this cytokine in relevance to human diseases.

Keywords: Interleukin 15, pET expression system, immune therapy, protein purification

Procedia PDF Downloads 413
5088 Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process

Authors: H. G. Noh, H. G. Park, B. S. Kang, J. Kim

Abstract:

Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case.

Keywords: electromagnetic forming, spiral coil, Lorentz force, manufacturing

Procedia PDF Downloads 306
5087 The Quest for Identity among African Americans: Life History of Imahkus Nzinga

Authors: Felicia Masenu

Abstract:

Identity formation remains central to diaspora populations as they are known to have multiple attachments to places, including the 'ancestral homeland.' This paper emphasizes the potency of the ancestral homeland in the imagination of diaspora populations and a 'yearning' for an eventual return. This has led to the repatriation and visits of many Diasporan Africans to Africa. What have also been highlighted are the motivations, experiences, and challenges associated with the return of African Americans to Africa, as well as some of the idealistic expectations that Diasporan Africans have regarding the ancestral homeland. When Diasporan Africans visit Africa, they are faced with different kinds of situations that are challenging. Yet, the number of visits to Africa by Diasporan Africans, particularly, African Americans, keep increasing. This paper draws on the life history of Imahkus Nzinga, an African American who repatriated to Ghana in the 1990s, as a case study of African Americans’ relentless quest to pursue the ancestral homeland, despite the challenges involved. The paper argues that the quest for identity construction remains the overriding motivation for African Americans in their decision to repatriate to Africa, and discusses how in this case, Imahkus Nzinga attempts to reconcile what is called in this paper 'identity struggle.'

Keywords: African Americans, Diaspora, identity formation, identity struggle, repatriation

Procedia PDF Downloads 330
5086 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 881
5085 Meningeal Hemangiopericytoma in an HIV-Positive Patient: A Case Report and Review of Literature

Authors: Roland Benedict Reyes, Marc Edsel Ayes, Regina Berba, Cybele Lara Abad

Abstract:

Background: Three AIDS-defining malignancies have been associated with the human immunodeficiency virus (HIV): Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical carcinoma. However, new cases of non-AIDS defining malignancies also have been increasingly associated with HIV. One of these is a rare intracranial malignancy, meningeal hemangiopericyotma. Case Description: A 32-year old HIV-positive male, not on highly active antiretroviral therapy, was admitted to our hospital due to generalized weakness and sudden onset hearing loss. Cranial MRI was done, which revealed a temporal nodule with the following considerations: granuloma, meningioma or metastases. A craniotomy was performed and the mass excised. Results from the biopsy showed meningeal hemangiopericytoma. The patient was then started on antiretroviral therapy (Lamivudine, Tenofovir, and Efavirenz) and was discharged for radiation therapy and metastatic work-up as an outpatient. On follow-up seven months later, metastatic work up revealed multiple hepatic foci not previously documented suggestive of metastasis short of biopsy sampling. Conclusions: This case of an intracranial hemangiopericytoma in an HIV-positive patient is the second case thus far presented, based on our systematic and extensive search of the literature.

Keywords: Hemangiopericytoma, Human Immunodeficiency Virus, Meningeal hemangiopericytoma, Neoplasm

Procedia PDF Downloads 463
5084 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 138
5083 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand

Authors: Salinee Thumronglaohapun

Abstract:

The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.

Keywords: location-allocation problem, stochastic demand, local search, genetic algorithm

Procedia PDF Downloads 124
5082 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.

Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork

Procedia PDF Downloads 543
5081 Campus Living Environments that Contribute to Mental Health: A Path Analysis Based on Environmental Characteristics

Authors: Jing Ren, Guifeng Han

Abstract:

The mental health of most college students in China is negative due to the multiple pressures of academics, life, and employment. The problem of psychological stress has been widely discussed and needs to be resolved immediately. Therefore, six typical green spaces in Chongqing University, China, were selected to explore the relationship between eight environmental characteristics and students' stress relief. A path analysis model is established using Amos26.0 to explain the paths for environmental characteristics influencing psychological stress relief. The results show that (1) tree species diversity (TSD) has a positive effect on stress relief, thus green coverage ratio (GCR), the proportion of water area (WAP), visual green index (VGI), and color richness (CR) have both positive and negative effects; (2) CR could reduce stress directly and indirectly, while GCR, TSD, WAP, and VGI could only reduce stress indirectly, and the most effective path is TSD→extent→stress relief; (3) CR can reduce stress more greatly for males than females, CR and VGI have better effects for art students than science students. The study can provide a theoretical reference for planning and designing campus living environments to improve students' mental health.

Keywords: public health, residential environment, space planning and management, mental health, path analysis

Procedia PDF Downloads 63
5080 Occupational Health and Safety Implications of Flower Farming on the Local Communities in Central Uganda

Authors: Charles Owenda Omulo

Abstract:

This study examines Occupational Health and Safety implications in flower farms in Central Uganda. An exploratory sequential mixed method design and methodology was employed, with multiple data collection methods, including interviews, focus group discussions, and surveys. The findings show that occupational health and safety issues remain a major problem in flower farms. While the majority of workers agreed that the farms provided them with protective equipment, the data collected from the workers point to either the improper use or ineffectiveness of this equipment. A number of workers reported skin irritations, sore and painful eyes, stiff necks, back pains, and occasional headaches that were presumably argued to have arisen from their work environment. The study also found that farms have been adjusting in an attempt to correct some of these anomalies. These included the use of biological approaches to control pests and diseases and restricting the use of some chemical formulations that are deemed to be harmful to applicators and the environment. Alongside these efforts, the study recommends increased vigilance by the flower farm owners in the provision of personal protective equipment to workers.

Keywords: flower farms, personal protective equipment, agrochemicals, rural communities, occupational health and safety

Procedia PDF Downloads 63
5079 Digital Media Market, Multimedia, and Computer Graphic Analysis Amidst Fluctuating Global and Local Scale Economy

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study centred on investigating the influence of multimedia systems and computer graphic design on global and local scale economies. Firstly, the study pinpointed the significant participants and top five global digital media distribution in the digital media market. Then, the study investigated whether a tie or variance existed between the digital media vendor and market shares. Also, the paper probed whether the global and local desktop, mobile, and tablet markets differ while assessing the association between the top five digital media and global market shares. Finally, the study explored the extent of growth, economic gains, major setbacks, and opportunities within the industry amidst global and local scale economic flux. A multiple regression analysis method was employed to analyse the significant influence of the top five global digital media on the total market share, and the Analysis of Variance (ANOVA) was used to analyse the global digital media vendor market share data. The findings were intriguing and significant.

Keywords: computer graphics, digital media market, global market share, market size, media vendor, multimedia, social media, systems design

Procedia PDF Downloads 33
5078 Multi-Stakeholder Engagement in the Food Waste Ecosystem: Opportunities and Policy Initiatives in Nigeria

Authors: Victor Oyewumi Ogunbiyi

Abstract:

Food waste is a global sustainability issue that demands that multiple stakeholders participate in solving it. This article examines how different food system stakeholders are held responsible in the policy debate related to food waste reduction. The study adopts a qualitative approach, paying attention to the views of both public and private policymakers and constructing their views relating to opportunities and policy initiatives towards waste reduction. The data consists of a list of opportunities and food policy initiatives in the development process in Nigeria. The authors identify three emerging opportunities: sectoral growth, technological demands in food service, and sustainable collaborative behaviour. The findings also revealed key policy initiatives for development: law and regulations, multi-stakeholder collaboration, economic incentives, research, and new knowledge. The study extends the marketing literature on food sustainability by investigating several stakeholders’ roles beyond the practical management of the food services sector. Additionally, considering policy initiative development for food waste mitigation sheds light on how stakeholders’ policy initiatives can sustain the food service sector. Finally, the authors outline policy implications.

Keywords: multistakeholder engagement, food services, food waste, policy initiatives, Nigeria

Procedia PDF Downloads 78
5077 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
5076 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant

Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon

Abstract:

In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.

Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt

Procedia PDF Downloads 549
5075 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 241
5074 Demographic Characteristics as a Determinant of the use of Health Care Services: Case of Nsukka, Southwest Nigeria

Authors: Beatrice Adeoye

Abstract:

Studies have associated social and demographic characteristics as strong determinants of utilization of health care services; however, not much has been done to explore the dynamics of these variables in Nigeria. This empirical study explores the link between demographic factors and the future use of health care services in Nsukka, southeast Nigeria. A total of 543 respondents were selected using multi-stage sampling technique. The findings of the study showed that majority (56.9%) of the respondents were female while 43.1% were male. More of the respondents were married (50.3%) while 41.80/0 of the respondents were between ages 26-35. Testing the demographic characteristics regarding where people will prefer to go first for treatment with multiple regression, It is only Sex as a demographic variable that indicates positive association for future occurrence to where people will prefer to go first for treatment with 0.08 significance. Age and education indicates no association considering their level of significance. This result shows that sex is one of the determinant factors of where and when people will go for treatment. This is pointing out the realities regarding African society where in the family setting, it is the father that dictates the cause of action. Also to buttress these findings, cross tabulating age with who determines where and when to go for treatment, findings show that majority (58.9%) within age 26-35 said their spouses decide on where and when to go for treatment. Findings showed that patriarchy still plays an important role in the utilization of health care delivery among the people studied.

Keywords: Demographic characters, Determinant, Health Care, treatment, self-medication, symptom,

Procedia PDF Downloads 385
5073 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge

Authors: Reza Salehi, Peter L. Dold, Yves Comeau

Abstract:

The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.

Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design

Procedia PDF Downloads 279
5072 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres

Authors: Krutika K. Sawant, Anil Solanki

Abstract:

The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.

Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design

Procedia PDF Downloads 458
5071 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 145
5070 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 316