Search results for: math performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12610

Search results for: math performance

9640 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 433
9639 A Comparative Life Cycle Assessment: The Design of a High Performance Building Envelope and the Impact on Operational and Embodied Energy

Authors: Stephanie Wall, Guido Wimmers

Abstract:

The construction and operation of buildings greatly contribute to environmental degradation through resource and energy consumption and greenhouse gas emissions. The design of the envelope system affects the environmental impact of a building in two major ways; 1) high thermal performance and air tightness can significantly reduce the operational energy of the building and 2) the material selection for the envelope largely impacts the embodied energy of the building. Life cycle assessment (LCA) is a scientific methodology that is used to systematically analyze the environmental load of processes or products, such as buildings, over their life. The paper will discuss the results of a comparative LCA of different envelope designs and the long-term monitoring of the Wood Innovation Research Lab (WIRL); a Passive House (PH), industrial building under construction in Prince George, Canada. The WIRL has a footprint of 30m x 30m on a concrete raft slab foundation and consists of shop space as well as a portion of the building that includes a two-story office/classroom space. The lab building goes beyond what was previously thought possible in regards to energy efficiency of industrial buildings in cold climates due to their large volume to surface ratio, small floor area, and high air change rate, and will be the first PH certified industrial building in Canada. These challenges were mitigated through the envelope design which utilizes solar gains while minimizing overheating, reduces thermal bridges with thick (570mm) prefabricated truss walls filled with blown in mineral wool insulation and a concrete slab and roof insulated with EPS rigid insulation. The envelope design results in lower operational and embodied energy when compared to buildings built to local codes or with steel. The LCA conducted using Athena Impact Estimator for Buildings identifies project specific hot spots as well illustrates that for high-efficiency buildings where the operational energy is relatively low; the embodied energy of the material selection becomes a significant design decision as it greatly impacts the overall environmental footprint of the building. The results of the LCA will be reinforced by long-term monitoring of the buildings envelope performance through the installation of temperature and humidity sensors throughout the floor slab, wall and roof panels and through detailed metering of the energy consumption. The data collected from the sensors will also be used to reinforce the results of hygrothermal analysis using WUFI®, a program used to verify the durability of the wall and roof panels. The WIRL provides an opportunity to showcase the use of wood in a high performance envelope of an industrial building and to emphasize the importance of considering the embodied energy of a material in the early stages of design. The results of the LCA will be of interest to leading researchers and scientists committed to finding sustainable solutions for new construction and high-performance buildings.

Keywords: high performance envelope, life cycle assessment, long term monitoring, passive house, prefabricated panels

Procedia PDF Downloads 148
9638 Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems

Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell

Abstract:

This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.

Keywords: cold formed steel joists, composite action, flooring systems, shear connection

Procedia PDF Downloads 117
9637 Evaluation of Diagnosis Performance Based on Pairwise Model Construction and Filtered Data

Authors: Hyun-Woo Cho

Abstract:

It is quite important to utilize right time and intelligent production monitoring and diagnosis of industrial processes in terms of quality and safety issues. When compared with monitoring task, fault diagnosis represents the task of finding process variables responsible causing a specific fault in the process. It can be helpful to process operators who should investigate and eliminate root causes more effectively and efficiently. This work focused on the active use of combining a nonlinear statistical technique with a preprocessing method in order to implement practical real-time fault identification schemes for data-rich cases. To compare its performance to existing identification schemes, a case study on a benchmark process was performed in several scenarios. The results showed that the proposed fault identification scheme produced more reliable diagnosis results than linear methods. In addition, the use of the filtering step improved the identification results for the complicated processes with massive data sets.

Keywords: diagnosis, filtering, nonlinear statistical techniques, process monitoring

Procedia PDF Downloads 223
9636 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools

Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour

Abstract:

Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing

Keywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages

Procedia PDF Downloads 177
9635 Influence of Dietary Herbal Blend on Crop Filling, Growth Performance and Nutrient Digestibility in Broiler Chickens

Authors: S. Ahmad, M. Rizwan, B. Ayub, S. Mehmood, P. Akhtar

Abstract:

This experiment was conducted to investigate the effect of supplementation of pure herbal blend on growth performance of boilers. One hundred and twenty birds were randomly distributed into 4 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), pure herbal blend at the rate of 150g/bag and pure herbal blend at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of feed intake showed significant (P < 0.05) results in 1st (305g), 2nd (696.88g), 3rd (1046.9g) and 4th (1173.2g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (2.54) and 4th (2.28) week of age. Also, both starter and finisher phase indicated significant (P < 0.05) differences among all treatment groups in feed intake (2023.4g) and (2302.6g) respectively. The statistical analysis indicated significant (P < 0.05) results in crop filling percentage (86.6%) after 2 hours of first feed supplementation. In case of nutrient digestibility trial, results showed significant (P < 0.05) values of crude protein and crude fat in starter phase as 69.65% and 56.62% respectively, and 69.57% and 48.55% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of pure herbal blend containing neem tree leaves powder, garlic powder, ginger powder and turmeric powder increase the production performance of broilers.

Keywords: neem tree leave, garlic, ginger, herbal blend, broiler

Procedia PDF Downloads 183
9634 Interaction between Cognitive Control and Language Processing in Non-Fluent Aphasia

Authors: Izabella Szollosi, Klara Marton

Abstract:

Aphasia can be defined as a weakness in accessing linguistic information. Accessing linguistic information is strongly related to information processing, which in turn is associated with the cognitive control system. According to the literature, a deficit in the cognitive control system interferes with language processing and contributes to non-fluent speech performance. The aim of our study was to explore this hypothesis by investigating how cognitive control interacts with language performance in participants with non-fluent aphasia. Cognitive control is a complex construct that includes working memory (WM) and the ability to resist proactive interference (PI). Based on previous research, we hypothesized that impairments in domain-general (DG) cognitive control abilities have negative effects on language processing. In contrast, better DG cognitive control functioning supports goal-directed behavior in language-related processes as well. Since stroke itself might slow down information processing, it is important to examine its negative effects on both cognitive control and language processing. Participants (N=52) in our study were individuals with non-fluent Broca’s aphasia (N = 13), with transcortical motor aphasia (N=13), individuals with stroke damage without aphasia (N=13), and unimpaired speakers (N = 13). All participants performed various computer-based tasks targeting cognitive control functions such as WM and resistance to PI in both linguistic and non-linguistic domains. Non-linguistic tasks targeted primarily DG functions, while linguistic tasks targeted more domain specific (DS) processes. The results showed that participants with Broca’s aphasia differed from the other three groups in the non-linguistic tasks. They performed significantly worse even in the baseline conditions. In contrast, we found a different performance profile in the linguistic domain, where the control group differed from all three stroke-related groups. The three groups with impairment performed more poorly than the controls but similar to each other in the verbal baseline condition. In the more complex verbal PI condition, however, participants with Broca’s aphasia performed significantly worse than all the other groups. Participants with Broca’s aphasia demonstrated the most severe language impairment and the highest vulnerability in tasks measuring DG cognitive control functions. Results support the notion that the more severe the cognitive control impairment, the more severe the aphasia. Thus, our findings suggest a strong interaction between cognitive control and language. Individuals with the most severe and most general cognitive control deficit - participants with Broca’s aphasia - showed the most severe language impairment. Individuals with better DG cognitive control functions demonstrated better language performance. While all participants with stroke damage showed impaired cognitive control functions in the linguistic domain, participants with better language skills performed also better in tasks that measured non-linguistic cognitive control functions. The overall results indicate that the level of cognitive control deficit interacts with the language functions in individuals along with the language spectrum (from severe to no impairment). However, future research is needed to determine any directionality.

Keywords: cognitive control, information processing, language performance, non-fluent aphasia

Procedia PDF Downloads 103
9633 Energy Efficient Refrigerator

Authors: Jagannath Koravadi, Archith Gupta

Abstract:

In a world with constantly growing energy prices, and growing concerns about the global climate changes caused by increased energy consumption, it is becoming more and more essential to save energy wherever possible. Refrigeration systems are one of the major and bulk energy consuming systems now-a-days in industrial sectors, residential sectors and household environment. Refrigeration systems with considerable cooling requirements consume a large amount of electricity and thereby contribute greatly to the running costs. Therefore, a great deal of attention is being paid towards improvement of the performance of the refrigeration systems in this regard throughout the world. The Coefficient of Performance (COP) of a refrigeration system is used for determining the system's overall efficiency. The operating cost to the consumer and the overall environmental impact of a refrigeration system in turn depends on the COP or efficiency of the system. The COP of a refrigeration system should therefore be as high as possible. Slight modifications in the technical elements of the modern refrigeration systems have the potential to reduce the energy consumption, and improvements in simple operational practices with minimal expenses can have beneficial impact on COP of the system. Thus, the challenge is to determine the changes that can be made in a refrigeration system in order to improve its performance, reduce operating costs and power requirement, improve environmental outcomes, and achieve a higher COP. The opportunity here, and a better solution to this challenge, will be to incorporate modifications in conventional refrigeration systems for saving energy. Energy efficiency, in addition to improvement of COP, can deliver a range of savings such as reduced operation and maintenance costs, improved system reliability, improved safety, increased productivity, better matching of refrigeration load and equipment capacity, reduced resource consumption and greenhouse gas emissions, better working environment, and reduced energy costs. The present work aims at fabricating a working model of a refrigerator that will provide for effective heat recovery from superheated refrigerant with the help of an efficient de-superheater. The temperature of the refrigerant and water in the de-super heater at different intervals of time are measured to determine the quantity of waste heat recovered. It is found that the COP of the system improves by about 6% with the de-superheater and the power input to the compressor decreases by 4 % and also the refrigeration capacity increases by 4%.

Keywords: coefficiency of performance, de-superheater, refrigerant, refrigeration capacity, heat recovery

Procedia PDF Downloads 310
9632 Effects of Mobile Assisted Language Learning on Madrassa Students’ ESL Learning

Authors: Muhammad Mooneeb Ali

Abstract:

Institutions, where religious knowledge is given are known as madrassas. They also give formal education along with religious education. This study will be a pioneer to explore if MALL can be beneficial for madrassa students or not in formal educational situations. For investigation, an experimental study was planned in Punjab where the sample size was 100 students, 10 each from 10 different madrassas of Punjab, who are studying at the intermediate level (i.e., 11th grade). The madrassas were chosen through a convenient sampling method, whereas the learners were chosen by a simple random sampling method. A pretest was conducted, and on the basis of the results, the learners were divided into two equal groups (experimental and controlled). After two months of treatment, a posttest was conducted, and the results of both groups were compared. The results indicated that the performance of the experimental group was significantly better than the control one. This indicates that MALL elevates the performance of Madrassa students.

Keywords: english language learners, madrassa students, formal education, mobile assisted language learning (MALL), Pakistan.

Procedia PDF Downloads 57
9631 Sulfur-Doped Hierarchically Porous Boron Nitride Nanosheets as an Efficient Carbon Dioxide Adsorbent

Authors: Sreetama Ghosh, Sundara Ramaprabhu

Abstract:

Carbon dioxide gas has been a major cause for the worldwide increase in green house effect, which leads to climate change and global warming. So CO₂ capture & sequestration has become an effective way to reduce the concentration of CO₂ in the environment. One such way to capture CO₂ in porous materials is by adsorption process. A potential material in this aspect is porous hexagonal boron nitride or 'white graphene' which is a well-known two-dimensional layered material with very high thermal stability. It had been investigated that the sample with hierarchical pore structure and high specific surface area shows excellent performance in capturing carbon dioxide gas and thereby mitigating the problem of environmental pollution to the certain extent. Besides, the presence of sulfur as well as nitrogen in the sample synergistically helps in the increase in adsorption capacity. In this work, a cost effective single step synthesis of highly porous boron nitride nanosheets doped with sulfur had been demonstrated. Besides, the CO₂ adsorption-desorption studies were carried on using a pressure reduction technique. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Thermodynamic studies suggest that the adsorption takes place mainly through physisorption. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Further, the surface modification of the highly porous nano sheets carried out by incorporating ionic liquids had further enhanced the capturing capability of CO₂ gas in the nanocomposite, revealing that this particular material has the potential to be an excellent adsorbent of carbon dioxide gas.

Keywords: CO₂ capture, hexagonal boron nitride nanosheets, porous network, sulfur doping

Procedia PDF Downloads 229
9630 The Effect of Mean Pressure on the Performance of a Low-Grade Heat-Driven Thermoacoustic Cooler

Authors: Irna Farikhah

Abstract:

Converting low-grade waste heat into useful energy such as sound energy which can then be used to generate acoustic power in a thermoacoustic engine has become an attracting issue for researchers. The generated power in thermoacoustic engine can be used for driving a thermoacoustic cooler when they are installed in a tube. This cooler system can be called as a heat-driven thermoacoustic cooler. In this study, low heating temperature of the engine is discussed. In addition, having high efficiency of the whole cooler is also essential. To design a thermoacoustic cooler having high efficiency with using low-grade waste heat for the engine, the effect of mean pressure is investigated. By increasing the mean pressure, the heating temperature to generate acoustic power can be decreased from 557 °C to 300 °C. Moreover, the efficiency of the engine and cooler regenerators attain 67% and 47% of the upper limit values, respectively and 49% of the acoustical work generated by the engine regenerator is utilized in the cooler regenerator. As a result, the efficiency of the whole cooler becomes 15% of the upper limit value.

Keywords: cooler, mean pressure, performance, thermoacoustic

Procedia PDF Downloads 240
9629 Garment Industry Development in South East Asia and Competitiveness

Authors: P. Nayak, Shakeel Shaikh

Abstract:

In this paper, we analyse the apparel export performance of Southeast Asian Nations (ASEAN) in the world market. The study covers the 2003-2012 period at the sector as well as product levels (6 digit HS) and analysis is based HS 2002 nomenclature. We measure export similarity among Southeast Asian nations for the apparel sector (two digit HS-61 & 62), besides analysing the products performance in the world through Revealed Comparative Advantage (RCA) technique. Coupled with RCA, the price as a factor of competitiveness was examined from the available Unit Value Realizations (UVR). Further to this, the resource availability or outsourced from the region was considered as an extension to the analysis of competitiveness between the nations. With the help of these methodologies, we examine the degree of competition between the exports of southeast nations in the world market. Our results show that Cambodia, Indonesia, Thailand, and Vietnam are well performing states within ASEAN. The paper further delves into sustainability of the export performing countries within ASEAN.

Keywords: export competitiveness, export similarity index, revealed comparative advantage, unit value realisation

Procedia PDF Downloads 267
9628 Work System Design in Productivity for Small and Medium Enterprises: A Systematic Literature Review

Authors: Silipa Halofaki, Devi R. Seenivasagam, Prashant Bijay, Kritin Singh, Rajeshkannan Ananthanarayanan

Abstract:

This comprehensive literature review delves into the effects and applications of work system design on the performance of Small and Medium-sized Enterprises (SMEs). The review process involved three independent reviewers who screened 514 articles through a four-step procedure: removing duplicates, assessing keyword relevance, evaluating abstract content, and thoroughly reviewing full-text articles. Various criteria, such as relevance to the research topic, publication type, study type, language, publication date, and methodological quality, were employed to exclude certain publications. A portion of articles that met the predefined inclusion criteria were included as a result of this systematic literature review. These selected publications underwent data extraction and analysis to compile insights regarding the influence of work system design on SME performance. Additionally, the quality of the included studies was assessed, and the level of confidence in the body of evidence was established. The findings of this review shed light on how work system design impacts SME performance, emphasizing important implications and applications. Furthermore, the review offers suggestions for further research in this critical area and summarizes the current state of knowledge in the field. Understanding the intricate connections between work system design and SME success can enhance operational efficiency, employee engagement, and overall competitiveness for SMEs. This comprehensive examination of the literature contributes significantly to both academic research and practical decision-making for SMEs.

Keywords: literature review, productivity, small and medium sized enterprises-SMEs, work system design

Procedia PDF Downloads 72
9627 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment

Authors: M. A. Aleem, M. S. Awan

Abstract:

Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.

Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force

Procedia PDF Downloads 270
9626 Aspects of Tone in the Educated Nigeria Accent of English

Authors: Nkereke Essien

Abstract:

The study seeks to analyze tone in the Educated Nigerian accent of English (ENAE) using the three tones: Low (L), High (H) and Low-High (LH). The aim is to find out whether there are any differences or similarities in the performance of the experimental group and the control. To achieve this, twenty educated Nigerian speakers of English who are educated in the language were selected by a Stratified Random Sampling (SRS) technique from two federal universities in Nigeria. They were given a passage to read and their intonation patterns were compared with that of a native speaker (control). The data were analyzed using Pierrehumbert’s (1980) intonation system of analysis. Three different approaches were employed in the analysis of the intonation Phrase (IP) as used by Pierrehumbert: perceptual, statistical and acoustic. We first analyzed our data from the passage and utterances using Willcoxon Matched Pairs Signs Ranks Test to establish the differences between the performance of the experimental group and the control. Then, the one-way Analysis of variance (ANOVA) statistical and Tukey-Krammar Post Hoc Tests were used to test for any significant difference in the performances of the twenty subjects. The acoustic data were presented to corroborate both the perceptual and statistical findings. Finally, the tonal patterns of the selected subjects in the three categories - A, B, C, were compared with those of the control. Our findings revealed that the tonal pattern of the Educated Nigerian Accent of English (ENAE) is significantly different from the tonal pattern of the Standard British Accent of English (SBAE) as represented by the control. A high preference for unidirectional tones, especially, the high tones was observed in the performance of the experimental group. Also, high tones do not necessarily correspond to stressed syllables and low tones to unstressed syllables.

Keywords: accent, intonation phrase (IP), tonal patterns, tone

Procedia PDF Downloads 209
9625 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage

Authors: Pranjali Sharma, Swati Neogi

Abstract:

Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.

Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance

Procedia PDF Downloads 132
9624 Knowledge Representation Based on Interval Type-2 CFCM Clustering

Authors: Lee Myung-Won, Kwak Keun-Chang

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation

Procedia PDF Downloads 304
9623 Taguchi Approach for the Optimization of the Stitching Defects of Knitted Garments

Authors: Adel El-Hadidy

Abstract:

For any industry, the production and quality management or wastages reductions have major impingement on overall factory economy. This work discusses the quality improvement of garment industry by applying Pareto analysis, cause and effect diagram and Taguchi experimental design. The main purpose of the work is to reduce the stitching defects, which will also minimize the rejection and reworks rate. Application of Pareto chart, fish bone diagram and Process Sigma Level/and or Performance Level tools helps solving those problems on priority basis. Among all, only sewing, defects are responsible form 69.3% to 97.3 % of total defects. Process Sigma level has been improved from 0.79 to 1.3 and performance rate improved, from F to D level. The results showed that the new set of sewing parameters was superior to the original one. It can be seen that fabric size has the largest effect on the sewing defects and that needle size has the smallest effect on the stitching defects.

Keywords: garment, sewing defects, cost of rework, DMAIC, sigma level, cause and effect diagram, Pareto analysis

Procedia PDF Downloads 152
9622 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs

Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.

Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox

Procedia PDF Downloads 359
9621 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen

Abstract:

Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.

Keywords: automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator

Procedia PDF Downloads 234
9620 Enhancement of Interface Properties of Thermoplastic Composite Materials

Authors: Reyhan Ozbask, Emek Moroydor Derin, Mustafa Dogu

Abstract:

There are a limited number of global companies in the world that manufacture and commercially offer thermoplastic composite prepregs in accordance with aerospace requirements. High-performance thermoplastic materials supplied for aerospace structural applications are PEEK (polyetheretherketone), PPS (polyphenylsulfite), PEI (polyetherimide), and PEKK (polyetherketoneketone). Among these, PEEK is the raw material used in the first applications and has started to become widespread. However, the use of these thermoplastic raw materials in composite production is very difficult due to their high processing temperatures and impregnation difficulties. This study, it is aimed to develop carbon fiber-reinforced thermoplastic PEEK composites that comply with the requirements of the aviation industry that are superior mechanical properties as well as being lightweight. Therefore, it is aimed to obtain high-performance thermoplastic composite materials with improved interface properties by using the sizing method (suspension development through chemical synthesis and functionalization), to optimize the production process. The use of boron nitride nanotube as a bonding agent by modifying its surface constitutes the original aspect of the study as it has not been used in composite production with high-performance thermoplastic materials yet. For this purpose, laboratory-scale studies on the application of thermoplastic compatible sizing will be carried out in order to increase the fiber-matrix interfacial adhesion. The method respectively consists of the selection of appropriate sizing type, laboratory-scale carbon fiber (CF) / poly ether ether ketone (PEEK) polymer interface enhancement studies, manufacturing of laboratory-scale BNNT coated CF/PEEK woven prepreg composites and their tests.

Keywords: carbon fiber reinforced composite, interface enhancement, boron nitride nanotube, thermoplastic composite

Procedia PDF Downloads 211
9619 Development of an Efficient Algorithm for Cessna Citation X Speed Optimization in Cruise

Authors: Georges Ghazi, Marc-Henry Devillers, Ruxandra M. Botez

Abstract:

Aircraft flight trajectory optimization has been identified to be a promising solution for reducing both airline costs and the aviation net carbon footprint. Nowadays, this role has been mainly attributed to the flight management system. This system is an onboard multi-purpose computer responsible for providing the crew members with the optimized flight plan from a destination to the next. To accomplish this function, the flight management system uses a variety of look-up tables to compute the optimal speed and altitude for each flight regime instantly. Because the cruise is the longest segment of a typical flight, the proposed algorithm is focused on minimizing fuel consumption for this flight phase. In this paper, a complete methodology to estimate the aircraft performance and subsequently compute the optimal speed in cruise is presented. Results showed that the obtained performance database was accurate enough to predict the flight costs associated with the cruise phase.

Keywords: Cessna Citation X, cruise speed optimization, flight cost, cost index, and golden section search

Procedia PDF Downloads 273
9618 Multi-Criteria Evaluation of Integrated Renewable Energy Systems for Community-Scale Applications

Authors: Kuanrong Qiu, Sebnem Madrali, Evgueniy Entchev

Abstract:

To achieve the satisfactory objectives in deploying integrated renewable energy systems, it is crucial to consider all the related parameters affecting the design and decision-making. The multi-criteria evaluation method is a reliable and efficient tool for achieving the most appropriate solution. The approach considers the influential factors and their relative importance in prioritizing the alternatives. In this paper, a multi-criteria decision framework, based on the criteria including technical, economic, environmental and reliability, is developed to evaluate and prioritize renewable energy technologies and configurations of their integrated systems for community applications, identify their viability, and thus support the adoption of the clean energy technologies and the decision-making regarding energy transitions and transition patterns. Case studies for communities in Canada show that resource availability and the configurations of the integrated systems significantly impact the economic performance and environmental performance.

Keywords: multi-criteria, renewables, integrated energy systems, decision-making, model

Procedia PDF Downloads 72
9617 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm

Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj

Abstract:

In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.

Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation

Procedia PDF Downloads 413
9616 Numerical Validation of Liquid Nitrogen Phase Change in a Star-Shaped Ambient Vaporizer

Authors: Yusuf Yilmaz, Gamze Gediz Ilis

Abstract:

Gas Nitrogen where has a boiling point of -189.52oC at atmospheric pressure widely used in the industry. Nitrogen that used in the industry should be transported in liquid form to the plant area. Ambient air vaporizer (AAV) generally used for vaporization of cryogenic gases such as liquid nitrogen (LN2), liquid oxygen (LOX), liquid natural gas (LNG), and liquid argon (LAR) etc. AAV is a group of star-shaped fin vaporizer. The design and the effect of the shape of fins of the vaporizer is one of the most important criteria for the performance of the vaporizer. In this study, the performance of AAV working with liquid nitrogen was analyzed numerically in a star-shaped aluminum finned pipe. The numerical analysis is performed in order to investigate the heat capacity of the vaporizer per meter pipe length. By this way, the vaporizer capacity can be predicted for the industrial applications. In order to achieve the validation of the numerical solution, the experimental setup is constructed. The setup includes a liquid nitrogen tank with a pressure of 9 bar. The star-shaped aluminum finned tube vaporizer is connected to the LN2 tank. The inlet and the outlet pressure and temperatures of the LN2 of the vaporizer are measured. The mass flow rate of the LN2 is also measured and collected. The comparison of the numerical solution is performed by these measured data. The ambient conditions of the experiment are given as boundary conditions to the numerical model. The surface tension and contact angle have a significant effect on the boiling of liquid nitrogen. Average heat transfer coefficient including convective and nucleated boiling components should be obtained for liquid nitrogen saturated flow boiling in the finned tube. Fluent CFD module is used to simulate the numerical solution. The turbulent k-ε model is taken to simulate the liquid nitrogen flow. The phase change is simulated by using the evaporation-condensation approach used with user-defined functions (UDF). The comparison of the numerical and experimental results will be shared in this study. Besides, the performance capacity of the star-shaped finned pipe vaporizer will be calculated in this study. Based on this numerical analysis, the performance of the vaporizer per unit length can be predicted for the industrial applications and the suitable pipe length of the vaporizer can be found for the special cases.

Keywords: liquid nitrogen, numerical modeling, two-phase flow, cryogenics

Procedia PDF Downloads 102
9615 A New Family of Flying Wing Low Reynolds Number Airfoils

Authors: Ciro Sobrinho Campolina Martins, Halison da Silva Pereira, Vitor Mainenti Leal Lopes

Abstract:

Unmanned Aerial vehicles (UAVs) has been used in a wide range of applications, from precise agriculture monitoring for irrigation and fertilization to military attack missions. Long range performance is required for many of these applications. Tailless aircrafts are commonly used as long-range configurations and, due to its small amount of stability, the airfoil shape design of its wings plays a central role on the performance of the airplane. In this work, a new family of flying wing airfoils is designed for low Reynolds number flows, typical of small-middle UAVs. Camber, thickness and their maximum positions in the chord are variables used for the airfoil geometry optimization. Aerodynamic non-dimensional coefficients were obtained by the well-established Panel Method. High efficient airfoils with small pitch moment coefficient are obtained from the analysis described and its aerodynamic polars are plotted.

Keywords: airfoil design, flying wing, low Reynolds number, tailless aircraft, UAV

Procedia PDF Downloads 613
9614 Factors Affecting Green Supply Chain Management of Lampang Ceramics Industry

Authors: Nattida Wannaruk, Wasawat Nakkiew

Abstract:

This research aims to study the factors that affect the performance of green supply chain management in the Lampang ceramics industry. The data investigation of this research was questionnaires which were gathered from 20 factories in the Lampang ceramics industry. The research factors are divided into five major groups which are green design, green purchasing, green manufacturing, green logistics and reverse logistics. The questionnaire has consisted of four parts that related to factors green supply chain management and general information of the Lampang ceramics industry. Then, the data were analyzed using descriptive statistic and priority of each factor by using the analytic hierarchy process (AHP). The understanding of factors affecting the green supply chain management of Lampang ceramics industry was indicated in the summary result along with each factor weight. The result of this research could be contributed to the development of indicators or performance evaluation in the future.

Keywords: Lampang ceramics industry, green supply chain management, analysis hierarchy process (AHP), factors affecting

Procedia PDF Downloads 321
9613 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 338
9612 Influence of Reinforcement Stiffness on the Performance of Back-to-Back Reinforced Earth Wall upon Rainwater Infiltration

Authors: Gopika Rajagopal, Sudheesh Thiyyakkandi

Abstract:

Back-to-back reinforced earth (RE) walls are extensively used in these days as bridge abutments and highway ramps, owing to their cost efficiency and ease of construction. High quality select fill is the most suitable backfill material due to its excellent engineering properties and constructability. However, industries are compelled to use low quality, locally available soil because of its ample availability on site. However, several failure cases of such walls are reported, especially subsequent to rainfall events. The stiffness of reinforcement is one of the major factors affecting the performance of RE walls. The present study focused on analyzing the effect of reinforcement stiffness on the performance of complete select fill, complete marginal fill, and hybrid-fill (i.e., combination of select and marginal fills) back-to-back RE walls, immediately after construction and upon rainwater infiltration through finite element modelling. A constant width to height (W/H) ratio of 3 and height (H) of 6 m was considered for the numerical analysis and the stiffness of reinforcement layers was varied from 500 kN/m to 10000 kN/m. Results showed that reinforcement stiffness had a noticeable influence on the response of RE wall, subsequent to construction as well as rainwater infiltration. Facing displacement was found to decrease and maximum reinforcement tension and factor of safety were observed to increase with increasing the stiffness of reinforcement. However, beyond a stiffness of 5000 kN/m, no significant reduction in facing displacement was observed. The behavior of fully marginal fill wall considered in this study was found to be reasonable even after rainwater infiltration when the high stiffness reinforcement layers are used.

Keywords: back-to-back reinforced earth wall, finite element modelling, rainwater infiltration, reinforcement stiffness

Procedia PDF Downloads 138
9611 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation

Authors: Lassaad Smirani

Abstract:

In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.

Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A

Procedia PDF Downloads 378