Search results for: boost rectifier operation
323 Assessment of Fermentative Activity in Heavy Metal Polluted Soils in Alaverdi Region, Armenia
Authors: V. M. Varagyan, G. A. Gevorgyan, K. V. Grigoryan, A. L. Varagyan
Abstract:
Alaverdi region is situated in the northern part of the Republic of Armenia. Previous studies (1989) in Alaverdi region showed that due to soil irrigation with the highly polluted waters of the Debed and Shnogh rivers, the content of heavy metals in the brown forest steppe soils was significantly higher than the maximum permissible concentration as a result of which the fermentative activity in all the layers of the soils was stressed. Compared to the non-polluted soils, the activity of ferments in the plough layers of the highly polluted soils decreased by 44 - 68% (invertase – 60%, phosphatase – 44%, urease – 66%, catalase – 68%). In case of the soil irrigation with the polluted waters, a decrease in the intensity of fermentative reactions was conditioned by the high content of heavy metals in the soils and changes in chemical composition, physical and physicochemical properties. 20-year changes in the fermentative activity in the brown forest steppe soils in Alaverdi region were investigated. The activity of extracellular ferments in the soils was determined by the unification methods. The study has confirmed that self-recovery process occurs in soils previously polluted with heavy metals which can be revealed by fermentative activity. The investigations revealed that during 1989 – 2009, the activity of ferments in the plough layers of the medium and highly polluted soils increased by 31.2 – 52.6% (invertase – 31.2%, urease – 52.6%, phosphatase – 33.3%, catalase – 41.8%) and 24.1 – 87.0% (invertase – 40.4%, urease – 76.9%, phosphatase – 24.1%, catalase – 87.0%) respectively which indicated that the dynamic properties of the soils, which had been broken due to heavy metal pollution, were improved. In 1989, the activity of the Alaverdi copper smelting plant was temporarily stopped due to financial problems caused by the economic crisis and the absence of market, and the factory again started operation in 1997 and isn’t currently running at full capacity. As a result, the Debed river water has obtained a new chemical composition and comparatively good irrigation properties. Due to irrigation with this water, the gradually recovery of the soil dynamic properties, which had been broken due to irrigation with the waters polluted with heavy metals, was occurred. This is also explained by the fact that in case of irrigation with the partially cleaned water, the soil protective function against pollutants rose due to a content increase in humus and silt fractions. It is supposed that in case of the soil irrigation with the partially cleaned water, the intensity of fermentative reactions wasn’t directly affected by heavy metals.Keywords: alaverdi region, heavy metal pollution, self-recovery, soil fermentative activity
Procedia PDF Downloads 301322 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body
Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker
Abstract:
This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel
Procedia PDF Downloads 393321 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups
Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley
Abstract:
Significant long-term investment projects can involve complex decisions. These are often described as capital projects, and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives; these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in the complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with the perception of veracity and validity of the data presented; this impacted the ability of group to reach consensus and, therefore, for decisions to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making
Procedia PDF Downloads 131320 Formation of Human Resources in the Light of Sustainable Development and the Achievement of Full Employment
Authors: Kaddour Fellague Mohammed
Abstract:
The world has seen in recent years, significant developments affected various aspects of life and influenced the different types of institutions, thus was born a new world is a world of globalization, which dominated the scientific revolution and the tremendous technological developments, and that contributed to the re-formation of human resources in contemporary organizations, and made patterns new regulatory and at the same time raised and strongly values and new ideas, the organizations have become more flexible, and faster response to consumer and environmental conditions, and exceeded the problem of time and place in the framework of communication and human interaction and use of advanced information technology and adoption mainly mechanism in running its operations , focused on performance and based strategic thinking and approach in order to achieve its strategic goals high degrees of superiority and excellence, this new reality created an increasing need for a new type of human resources, quality aims to renew and aspire to be a strategic player in managing the organization and drafting of various strategies, think globally and act locally, to accommodate local variables in the international markets, which began organizations tend to strongly as well as the ability to work under different cultures. Human resources management of the most important management functions to focus on the human element, which is considered the most valuable resource of the Department and the most influential in productivity at all, that the management and development of human resources Tattabra a cornerstone in the majority of organizations which aims to strengthen the organizational capacity, and enable companies to attract and rehabilitation of the necessary competencies and are able to keep up with current and future challenges, human resources can contribute to and strongly in achieving the objectives and profit organization, and even expand more than contribute to the creation of new jobs to alleviate unemployment and achieve full operation, administration and human resources mean short optimal use of the human element is available and expected, where he was the efficiency and capabilities, and experience of this human element, and his enthusiasm for the work stop the efficiency and success in reaching their goals, so interested administration scientists developed the principles and foundations that help to make the most of each individual benefit in the organization through human resources management, these foundations start of the planning and selection, training and incentives and evaluation, which is not separate from each other, but are integrated with each other as a system systemic order to reach the efficient functioning of the human resources management and has been the organization as a whole in the context of development sustainable.Keywords: configuration, training, development, human resources, operating
Procedia PDF Downloads 432319 Land Use Influence on the 2014 Catastrophic Flood in the Northeast of Peninsular Malaysia
Authors: Zulkifli Yusop
Abstract:
The severity of December 2014 flood on the east coast of Peninsular Malaysia has raised concern over the adequacy of existing land use practices and policies. This article assesses flood responses to selective logging, plantation establishment (oil palm and rubber) and their subsequent management regimes. The hydrological impacts were evaluated on two levels: on-site (mostly in the upstream) and off-site to reflect the cumulative impact at downstream. Results of experimental catchment studies suggest that on-site impact of flood could be kept to a minimum when selecting logging strictly adhere to the existing guidelines. However, increases in flood potential and sedimentation rate were observed with logging intensity and slope steepness. Forest conversion to plantation show the highest impacts. Except on the heavily compacted surfaces, the ground revegetation is usually rapid within two years upon the cessation of the logging operation. The hydrological impacts of plantation opening and replanting could be significantly reduced once the cover crop has fully established which normally takes between three to six months after sowing. However, as oil palms become taller and the canopy gets closer, the cover crop tends to die off due to light competition, and its protecting function gradually diminishes. The exposed soil is further compacted by harvesting machinery which subsequently leads to greater overland flow and erosion rates. As such, the hydrological properties of matured oil palm plantations are generally poorer than in young plantation. In hilly area, the undergrowth in rubber plantation is usually denser compared to under oil palm. The soil under rubber trees is also less compacted as latex collection is done manually. By considering the cumulative effects of land-use over space and time, selective logging seems to pose the least impact on flood potential, followed by planting rubber for latex, oil palm and Latex Timber Clone (LTC). The cumulative hydrological impact of LTC plantation is the most severe because of its shortest replanting rotation (12 to 15 years) compared to oil palm (25 years) and rubber for latex (35 years). Furthermore, the areas gazetted for LTC are mostly located on steeper slopes which are more susceptible to landslide and erosion. Forest has limited capability to store excess rainfall and is only effective in attenuating regular floods. Once the hydrologic storage is exceeded, the excess rainfall will appear as flood water. Therefore, for big floods, rainfall regime has a much bigger influence than land use.Keywords: selective logging, plantation, extreme rainfall, debris flow
Procedia PDF Downloads 346318 A Risk-Based Modeling Approach for Successful Adoption of CAATTs in Audits: An Exploratory Study Applied to Israeli Accountancy Firms
Authors: Alon Cohen, Jeffrey Kantor, Shalom Levy
Abstract:
Technology adoption models are extensively used in the literature to explore drivers and inhibitors affecting the adoption of Computer Assisted Audit Techniques and Tools (CAATTs). Further studies from recent years suggested additional factors that may affect technology adoption by CPA firms. However, the adoption of CAATTs by financial auditors differs from the adoption of technologies in other industries. This is a result of the unique characteristics of the auditing process, which are expressed in the audit risk elements and the risk-based auditing approach, as encoded in the auditing standards. Since these audit risk factors are not part of the existing models that are used to explain technology adoption, these models do not fully correspond to the specific needs and requirements of the auditing domain. The overarching objective of this qualitative research is to fill the gap in the literature, which exists as a result of using generic technology adoption models. Followed by a pretest and based on semi-structured in-depth interviews with 16 Israeli CPA firms of different sizes, this study aims to reveal determinants related to audit risk factors that influence the adoption of CAATTs in audits and proposes a new modeling approach for the successful adoption of CAATTs. The findings emphasize several important aspects: (1) while large CPA firms developed their own inner guidelines to assess the audit risk components, other CPA firms do not follow a formal and validated methodology to evaluate these risks; (2) large firms incorporate a variety of CAATTs, including self-developed advanced tools. On the other hand, small and mid-sized CPA firms incorporate standard CAATTs and still need to catch up to better understand what CAATTs can offer and how they can contribute to the quality of the audit; (3) the top management of mid-sized and small CPA firms should be more proactive and updated about CAATTs capabilities and contributions to audits; and (4) All CPA firms consider professionalism as a major challenge that must be constantly managed to ensure an optimal CAATTs operation. The study extends the existing knowledge of CAATTs adoption by looking at it from a risk-based auditing approach. It suggests a new model for CAATTs adoption by incorporating influencing audit risk factors that auditors should examine when considering CAATTs adoption. Since the model can be used in various audited scenarios and supports strategic, risk-based decisions, it maximizes the great potential of CAATTs on the quality of the audits. The results and insights can be useful to CPA firms, internal auditors, CAATTs developers and regulators. Moreover, it may motivate audit standard-setters to issue updated guidelines regarding CAATTs adoption in audits.Keywords: audit risk, CAATTs, financial auditing, information technology, technology adoption models
Procedia PDF Downloads 67317 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions
Authors: Saif Alomari
Abstract:
The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters
Procedia PDF Downloads 142316 Simulation of Technological, Energy and GHG Comparison between a Conventional Diesel Bus and E-bus: Feasibility to Promote E-bus Change in High Lands Cities
Authors: Riofrio Jonathan, Fernandez Guillermo
Abstract:
Renewable energy represented around 80% of the energy matrix for power generation in Ecuador during 2020, so the deployment of current public policies is focused on taking advantage of the high presence of renewable sources to carry out several electrification projects. These projects are part of the portfolio sent to the United Nations Framework on Climate Change (UNFCCC) as a commitment to reduce greenhouse gas emissions (GHG) in the established national determined contribution (NDC). In this sense, the Ecuadorian Organic Energy Efficiency Law (LOEE) published in 2019 promotes E-mobility as one of the main milestones. In fact, it states that the new vehicles for urban and interurban usage must be E-buses since 2025. As a result, and for a successful implementation of this technological change in a national context, it is important to deploy land surveys focused on technical and geographical areas to keep the quality of services in both the electricity and transport sectors. Therefore, this research presents a technological and energy comparison between a conventional diesel bus and its equivalent E-bus. Both vehicles fulfill all the technical requirements to ride in the study-case city, which is Ambato in the province of Tungurahua-Ecuador. In addition, the analysis includes the development of a model for the energy estimation of both technologies that are especially applied in a highland city such as Ambato. The altimetry of the most important bus routes in the city varies from 2557 to 3200 m.a.s.l., respectively, for the lowest and highest points. These operation conditions provide a grade of novelty to this paper. Complementary, the technical specifications of diesel buses are defined following the common features of buses registered in Ambato. On the other hand, the specifications for E-buses come from the most common units introduced in Latin America because there is not enough evidence in similar cities at the moment. The achieved results will be good input data for decision-makers since electric demand forecast, energy savings, costs, and greenhouse gases emissions are computed. Indeed, GHG is important because it allows reporting the transparency framework that it is part of the Paris Agreement. Finally, the presented results correspond to stage I of the called project “Analysis and Prospective of Electromobility in Ecuador and Energy Mix towards 2030” supported by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).Keywords: high altitude cities, energy planning, NDC, e-buses, e-mobility
Procedia PDF Downloads 151315 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth
Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen
Abstract:
Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast
Procedia PDF Downloads 171314 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions
Authors: M. Tarik Boyraz, M. Bilge Imer
Abstract:
Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.Keywords: heat treatment, IN738LC, simulations, super-alloys
Procedia PDF Downloads 248313 Outcome of Dacryocystorhinostomy with Peroperative Local Use of Mitomycin-C
Authors: Chandra Shekhar Majumder, Orin Sultana Jamie
Abstract:
Background: Dacryocystorhinostomy (DCR) has been a widely accepted surgical intervention for nasolacrimal duct obstructions. Some previous studies demonstrated the potential benefits of the peroperative application of agents like Mitomycin-C (MMC) with DCR to improve surgical outcomes. Relevant studies are rare in Bangladesh, and there are controversies about the dose, duration of MMC, and outcome. Therefore, the present study aimed to investigate the comparative efficacy of DCR with and without MMC in a tertiary hospital in Bangladesh. Objective: The study aims to determine the outcome of a dacryocystorhinostomy with preoperative local use of mitomycin–C. Methods: An analytical study was conducted in the Department of Ophthalmology, Sir Salimullah Medical College & Mitford Hospital, Dhaka, from January 2023 to September 2023. Seventy patients who were admitted for DCR operation were included according to the inclusion and exclusion criteria. Patients were divided into two groups: those who underwent DCR with peroperative administration of 0.2 mg/ml Mitomycin-C for 5 minutes (Group I) and those who underwent DCR alone (Group II). All patients were subjected to detailed history taking, clinical examination, and relevant investigations. All patients underwent DCR according to standard guidelines and ensured the highest peroperative and postoperative care. Then, patients were followed up at 7th POD, 1-month POD, 3 months POD, and 6 months POD to observe the success rate between the two groups by assessing tearing condition, irrigation, height of tear meniscus, and FDDT- test. Data was recorded using a pre-structured questionnaire, and collected data were analyzed using SPSS 23. Results: The mean age of the study patients was 42.17±6.7 (SD) years and 42.29±7.1 (SD) years in Groups I and II, respectively, with no significant difference (p=0.945). At the 6th month’s follow-up, group I patients were observed with 94.3% frequency of symptom-free, 85.6% patency of lacrimal drainage system, 68.6% had tear meniscus <0.1mm and 88.6% had positive Fluorescence Dye Disappearance Test (FDDT test). In group II, 91.4% were symptom-free, 68.6% showed patency, 57.1% had a height of tear meniscus < 0.1 mm, and 85.6% had FDDT test positive. But no statistically significant difference was observed (p<.05). Conclusion: The use of Mitomycin-C preoperatively during DCR offers better postoperative outcomes, particularly in maintaining patency and achieving symptom resolution with more FDDT test positive and improvement of tear meniscus in the MMC group than the control group. However, this study didn’t demonstrate a statistically significant difference between the two groups. Further research with larger sample sizes and longer follow-up periods would be beneficial to corroborate these findings.Keywords: dacryocystorhinostomy, mitomycin-c, dacryocystitis, nasolacrimal duct obstruction
Procedia PDF Downloads 45312 Analog Railway Signal Object Controller Development
Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun
Abstract:
Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.Keywords: object controller, railway electronic, analog electronic, safety, railway signal
Procedia PDF Downloads 99311 Multi-Criteria Nautical Ports Capacity and Services Planning
Authors: N. Perko, N. Kavran, M. Bukljas, I. Berbic
Abstract:
This paper is a result of implemented research on proposed introduced methodology for nautical ports capacity planning by introducing a multi-criteria approach of defined criteria and impacts at the Adriatic Sea. The purpose was analysing the determinants -characteristics of infrastructure and services of nautical ports capacity allocated, especially nowadays due to COVID-19 pandemic, as crucial for the successful operation of nautical ports. Giving the importance of the defined priorities for short-term and long-term planning is essential not only in terms of the development of nautical tourism but also in terms of developing the maritime system, but unfortunately, this is not always carried out. Evaluation of the use of resources should follow from a detailed analysis of all aspects of resources bearing in mind that nautical tourism used resources in a sustainable manner and generate effects in the tourism and maritime sectors. Consequently, the identified multiplier effect of nautical tourism, which should be defined and quantified in detail, should be one of the major competitive products on the Croatian Adriatic and the Mediterranean. Research of nautical tourism is necessary to quantify the effects and required planning system development. In the future, the greatest threat to the long-term sustainable development of nautical tourism can be its further uncontrolled or unlimited and undirected development, especially under pressure markedly higher demand than supply for new moorings in the Mediterranean. Results of this implemented research are applicable to nautical ports management and decision-makers of maritime transport system development. This paper will present implemented research and obtained result-developed methodology for nautical port capacity planning -port capacity planning multi-criteria decision-making. A proposed methodological approach of multi-criteria capacity planning includes four criteria (spatial - transport, cost - infrastructure, ecological and organizational criteria, and additional services). The importance of the criteria and sub-criteria is evaluated and carried out as the basis for sensitivity analysis of the importance of the criteria and sub-criteria. Based on the analysis of the identified and quantified importance of certain criteria and sub-criteria, as well as sensitivity analysis and analysis of changes of the quantified importance, scientific and applicable results will be presented. These obtained results have practical applicability by management of nautical ports in the planning of increasing capacity and further development and for the adaptation of existing nautical ports. Obtained research is applicable and replicable in other seas, and results are especially important and useful in this COVID-19 pandemic challenging maritime development framework.Keywords: Adriatic Sea, capacity, infrastructures, maritime system, methodology, nautical ports, nautical tourism, service
Procedia PDF Downloads 190310 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy
Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena
Abstract:
Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.Keywords: online range monitoring, particle therapy, quality assurance, tracking detector
Procedia PDF Downloads 240309 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study
Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas
Abstract:
The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions
Procedia PDF Downloads 241308 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.Keywords: censored data, R statistical software, reliability analysis, time to failure
Procedia PDF Downloads 401307 Proactive SoC Balancing of Li-ion Batteries for Automotive Application
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas weyh
Abstract:
The demand for battery electric vehicles (BEV) is steadily increasing, and it can be assumed that electric mobility will dominate the market for individual transportation in the future. Regarding BEVs, the focus of state-of-the-art research and development is on vehicle batteries since their properties primarily determine vehicles' characteristic parameters, such as price, driving range, charging time, and lifetime. State-of-the-art battery packs consist of invariable configurations of battery cells, connected in series and parallel. A promising alternative is battery systems based on multilevel inverters, which can alter the configuration of the battery cells during operation via semiconductor switches. The main benefit of such topologies is that a three-phase AC voltage can be directly generated from the battery pack, and no separate power inverters are required. Therefore, modular battery systems based on different multilevel inverter topologies and reconfigurable battery systems are currently under investigation. Another advantage of the multilevel concept is that the possibility to reconfigure the battery pack allows battery cells with different states of charge (SoC) to be connected in parallel, and thus low-loss balancing can take place between such cells. In contrast, in conventional battery systems, parallel connected (hard-wired) battery cells are discharged via bleeder resistors to keep the individual SoCs of the parallel battery strands balanced, ultimately reducing the vehicle range. Different multilevel inverter topologies and reconfigurable batteries have been described in the available literature that makes the before-mentioned advantages possible. However, what has not yet been described is how an intelligent operating algorithm needs to look like to keep the SoCs of the individual battery strands of a modular battery system with integrated power electronics balanced. Therefore, this paper suggests an SoC balancing approach for Battery Modular Multilevel Management (BM3) converter systems, which can be similarly used for reconfigurable battery systems or other multilevel inverter topologies with parallel connectivity. The here suggested approach attempts to simultaneously utilize all converter modules (bypassing individual modules should be avoided) because the parallel connection of adjacent modules reduces the phase-strand's battery impedance. Furthermore, the presented approach tries to reduce the number of switching events when changing the switching state combination. Thereby, the ohmic battery losses and switching losses are kept as low as possible. Since no power is dissipated in any designated bleeder resistors and no designated active balancing circuitry is required, the suggested approach can be categorized as a proactive balancing approach. To verify the algorithm's validity, simulations are used.Keywords: battery management system, BEV, battery modular multilevel management (BM3), SoC balancing
Procedia PDF Downloads 120306 Periareolar Zigzag Incision in the Conservative Surgical Treatment of Breast Cancer
Authors: Beom-Seok Ko, Yoo-Seok Kim, Woo-Sung Lim, Ku-Sang Kim, Hyun-Ah Kim, Jin-Sun Lee, An-Bok Lee, Jin-Gu Bong, Tae-Hyun Kim, Sei-Hyun Ahn
Abstract:
Background: Breast conserving surgery (BCS) followed by radiation therapy is today standard therapy for early breast cancer. It is safe therapeutic procedure in early breast cancers, because it provides the same level of overall survival as mastectomy. There are a number of different types of incisions used to BCS. Avoiding scars on the breast is women’s desire. Numerous minimal approaches have evolved due to this concern. Periareolar incision is often used when the small tumor relatively close to the nipple. But periareolar incision has a disadvantages include limited exposure of the surgical field. In plastic surgery, various methods such as zigzag incisions have been recommended to achieve satisfactory esthetic results. Periareolar zigzag incision has the advantage of not only good surgical field but also contributed to better surgical scars. The purpose of this study was to evaluate the oncological safety of procedures by studying the status of the surgical margins of the excised tumor specimen and reduces the need for further surgery. Methods: Between January 2016 and September 2016, 148 women with breast cancer underwent BCS or mastectomy by the same surgeon in ASAN medical center. Patients with exclusion criteria were excluded from this study if they had a bilateral breast cancer or underwent resection of the other tumors or taken axillary dissection or performed other incision methods. Periareolar zigzag incision was performed and excision margins of the specimen were identified frozen sections and paraffin-embedded or permanent sections in all patients in this study. We retrospectively analyzed tumor characteristics, the operative time, size of specimen, the distance from the tumor to nipple. Results: A total of 148 patients were reviewed, 72 included in the final analysis, 76 excluded. The mean age of the patients was 52.6 (range 25-19 years), median tumor size was 1.6 cm (range, 0.2-8.8), median tumor distance from the nipple was 4.0 cm (range, 1.0-9.0), median excised specimen sized was 5.1 cm (range, 2.8-15.0), median operation time was 70.0 minute (range, 39-138). All patients were discharged with no sign of infection or skin necrosis. Free resection margin was confirmed by frozen biopsy and permanent biopsy in all samples. There were no patients underwent reoperation. Conclusions: We suggest that periareolar zigzag incision can provide a good surgical field to remove a relatively large tumor and may provide cosmetically good outcomes.Keywords: periareolar zigzag incision, breast conserving surgery, breast cancer, resection margin
Procedia PDF Downloads 230305 Evaluating the Service Quality and Customers’ Satisfaction for Lihpaoland in Taiwan
Authors: Wan-Yu Liu, Tiffany April Lin, Yu-Chieh Tang, Yi-Lin Wang, Chieh-Hui Li
Abstract:
As the national income in Taiwan has been raised, the life style of the public has also been changed, so that the tourism industry gradually moves from a service industry to an experience economy. The Lihpaoland is one of the most popular theme parks in Taiwan. However, the related works on performance of service quality of the park have been lacking since its re-operation in 2012. Therefore, this study investigates the quality of software/hardware facilities and services of the Lihpaoland, and aims to achieve the following three goals: 1) analyzing how various sample data of tourists leads to different results for service quality of LihpaoLand; 2) analyzing how tourists respond to the service tangibility, service reliability, service responsiveness, service guarantee, and service empathy of LihpaoLand; 3) according to the theoretical and empirical results, proposing how to improve the overall facilities and services of LihpaoLand, and hoping to provide suggestions to the LihpaoLand or other related businesses to make decision. The survey was conducted on the tourists to the LihpaoLand using convenience sampling, and 400 questionnaires were collected successfully. Analysis results show that tourists paid much attention to maintenance of amusement facilities and safety of the park, and were satisfied with them, which are great advantages of the park. However, transportation around the LihpaoLand was inadequate, and the price of the Fullon hotel (which is the hotel closest to the LihpaoLand) were not accepted by tourists – more promotion events are recommended. Additionally, the shows are not diversified, and should be improved with the highest priority. Tourists did not pay attention to service personnel’s clothing and the ticket price, but they were not satisfied with them. Hence, this study recommends to design more distinctive costumes and conduct ticket promotions. Accordingly, the suggestions made in this study for LihpaoLand are stated as follows: 1) Diversified amusement facilities should be provided to satisfy the needs at different ages. 2) Cheep but tasty catering and more distinctive souvenirs should be offered. 3) Diversified propaganda schemes should be strengthened to increase number of tourists. 4) Quality and professional of the service staff should be enhanced to acquire public praise and tourists revisiting. 5) Ticket promotions in peak seasons, low seasons, and special events should be conducted. 6) Proper traffic flows should be planned and combined with technologies to reduce waiting time of tourists. 7) The features of theme landscape in LihpaoLand should be strengthened to increase willingness of the tourists with special preferences to visit the park. 8) Ticket discounts or premier points card promotions should be adopted to reward the tourists with high loyalty.Keywords: service quality, customers’ satisfaction, theme park, Taiwan
Procedia PDF Downloads 471304 Efficiency of Maritime Simulator Training in Oil Spill Response Competence Development
Authors: Antti Lanki, Justiina Halonen, Juuso Punnonen, Emmi Rantavuo
Abstract:
Marine oil spill response operation requires extensive vessel maneuvering and navigation skills. At-sea oil containment and recovery include both single vessel and multi-vessel operations. Towing long oil containment booms that are several hundreds of meters in length, is a challenge in itself. Boom deployment and towing in multi-vessel configurations is an added challenge that requires precise coordination and control of the vessels. Efficient communication, as a prerequisite for shared situational awareness, is needed in order to execute the response task effectively. To gain and maintain adequate maritime skills, practical training is needed. Field exercises are the most effective way of learning, but especially the related vessel operations are resource-intensive and costly. Field exercises may also be affected by environmental limitations such as high sea-state or other adverse weather conditions. In Finland, the seasonal ice-coverage also limits the training period to summer seasons only. In addition, environmental sensitiveness of the sea area restricts the use of real oil or other target substances. This paper examines, whether maritime simulator training can offer a complementary method to overcome the training challenges related to field exercises. The objective is to assess the efficiency and the learning impact of simulator training, and the specific skills that can be trained most effectively in simulators. This paper provides an overview of learning results from two oil spill response pilot courses, in which maritime navigational bridge simulators were used to train the oil spill response authorities. The simulators were equipped with an oil spill functionality module. The courses were targeted at coastal Fire and Rescue Services responsible for near shore oil spill response in Finland. The competence levels of the participants were surveyed before and after the course in order to measure potential shifts in competencies due to the simulator training. In addition to the quantitative analysis, the efficiency of the simulator training is evaluated qualitatively through feedback from the participants. The results indicate that simulator training is a valid and effective method for developing marine oil spill response competencies that complement traditional field exercises. Simulator training provides a safe environment for assessing various oil containment and recovery tactics. One of the main benefits of the simulator training was found to be the immediate feedback the spill modelling software provides on the oil spill behaviour as a reaction to response measures.Keywords: maritime training, oil spill response, simulation, vessel manoeuvring
Procedia PDF Downloads 172303 Strengthening by Assessment: A Case Study of Rail Bridges
Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas
Abstract:
The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening
Procedia PDF Downloads 309302 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 174301 Mitigation of Indoor Human Exposure to Traffic-Related Fine Particulate Matter (PM₂.₅)
Authors: Ruchi Sharma, Rajasekhar Balasubramanian
Abstract:
Motor vehicles emit a number of air pollutants, among which fine particulate matter (PM₂.₅) is of major concern in cities with high population density due to its negative impacts on air quality and human health. Typically, people spend more than 80% of their time indoors. Consequently, human exposure to traffic-related PM₂.₅ in indoor environments has received considerable attention. Most of the public residential buildings in tropical countries are designed for natural ventilation where indoor air quality tends to be strongly affected by the migration of air pollutants of outdoor origin. However, most of the previously reported traffic-related PM₂.₅ exposure assessment studies relied on ambient PM₂.₅ concentrations and thus, the health impact of traffic-related PM₂.₅ on occupants in naturally ventilated buildings remains largely unknown. Therefore, a systematic field study was conducted to assess indoor human exposure to traffic-related PM₂.₅ with and without mitigation measures in a typical naturally ventilated residential apartment situated near a road carrying a large volume of traffic. Three PM₂.₅ exposure scenarios were simulated in this study, i.e., Case 1: keeping all windows open with a ceiling fan on as per the usual practice, Case 2: keeping all windows fully closed as a mitigation measure, and Case 3: keeping all windows fully closed with the operation of a portable indoor air cleaner as an additional mitigation measure. The indoor to outdoor (I/O) ratios for PM₂.₅ mass concentrations were assessed and the effectiveness of using the indoor air cleaner was quantified. Additionally, potential human health risk based on the bioavailable fraction of toxic trace elements was also estimated for the three cases in order to identify a suitable mitigation measure for reducing PM₂.₅ exposure indoors. Traffic-related PM₂.₅ levels indoors exceeded the air quality guidelines (12 µg/m³) in Case 1, i.e., under natural ventilation conditions due to advective flow of outdoor air into the indoor environment. However, while using the indoor air cleaner, a significant reduction (p < 0.05) in the PM₂.₅ exposure levels was noticed indoors. Specifically, the effectiveness of the air cleaner in terms of reducing indoor PM₂.₅ exposure was estimated to be about 74%. Moreover, potential human health risk assessment also indicated a substantial reduction in potential health risk while using the air cleaner. This is the first study of its kind that evaluated the indoor human exposure to traffic-related PM₂.₅ and identified a suitable exposure mitigation measure that can be implemented in densely populated cities to realize health benefits.Keywords: fine particulate matter, indoor air cleaner, potential human health risk, vehicular emissions
Procedia PDF Downloads 126300 An Effective Approach to Knowledge Capture in Whole Life Costing in Constructions Project
Authors: Ndibarafinia Young Tobin, Simon Burnett
Abstract:
In spite of the benefits of implementing whole life costing technique as a valuable approach for comparing alternative building designs allowing operational cost benefits to be evaluated against any initial cost increases and also as part of procurement in the construction industry, its adoption has been relatively slow due to the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice, i.e. the lack of professionals in many establishments with knowledge and training on the use of whole life costing technique, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. This has proved to be very challenging to those who showed some willingness to employ the technique in a construction project. The knowledge generated from a project can be considered as best practices learned on how to carry out tasks in a more efficient way, or some negative lessons learned which have led to losses and slowed down the progress of the project and performance. Knowledge management in whole life costing practice can enhance whole life costing analysis execution in a construction project, as lessons learned from one project can be carried on to future projects, resulting in continuous improvement, providing knowledge that can be used in the operation and maintenance phases of an assets life span. Purpose: The purpose of this paper is to report an effective approach which can be utilised in capturing knowledge in whole life costing practice in a construction project. Design/methodology/approach: An extensive literature review was first conducted on the concept of knowledge management and whole life costing. This was followed by a semi-structured interview to explore the existing and good practice knowledge management in whole life costing practice in a construction project. The data gathered from the semi-structured interview was analyzed using content analysis and used to structure an effective knowledge capturing approach. Findings: From the results obtained in the study, it shows that the practice of project review is the common method used in the capturing of knowledge and should be undertaken in an organized and accurate manner, and results should be presented in the form of instructions or in a checklist format, forming short and precise insights. The approach developed advised that irrespective of how effective the approach to knowledge capture, the absence of an environment for sharing knowledge, would render the approach ineffective. Open culture and resources are critical for providing a knowledge sharing setting, and leadership has to sustain whole life costing knowledge capture, giving full support for its implementation. The knowledge capturing approach has been evaluated by practitioners who are experts in the area of whole life costing practice. The results have indicated that the approach to knowledge capture is suitable and efficient.Keywords: whole life costing, knowledge capture, project review, construction industry, knowledge management
Procedia PDF Downloads 260299 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit
Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier
Abstract:
Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability
Procedia PDF Downloads 155298 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 283297 Fine-Scale Modeling the Influencing Factors of Multi-Time Dimensions of Transit Ridership at Station Level: The Study of Guangzhou City
Authors: Dijiang Lyu, Shaoying Li, Zhangzhi Tan, Zhifeng Wu, Feng Gao
Abstract:
Nowadays, China is experiencing rapidly urban rail transit expansions in the world. The purpose of this study is to finely model factors influencing transit ridership at multi-time dimensions within transit stations’ pedestrian catchment area (PCA) in Guangzhou, China. This study was based on multi-sources spatial data, including smart card data, high spatial resolution images, points of interest (POIs), real-estate online data and building height data. Eight multiple linear regression models using backward stepwise method and Geographic Information System (GIS) were created at station-level. According to Chinese code for classification of urban land use and planning standards of development land, residential land-use were divided into three categories: first-level (e.g. villa), second-level (e.g. community) and third-level (e.g. urban villages). Finally, it concluded that: (1) four factors (CBD dummy, number of feeder bus route, number of entrance or exit and the years of station operation) were proved to be positively correlated with transit ridership, but the area of green land-use and water land-use negative correlated instead. (2) The area of education land-use, the second-level and third-level residential land-use were found to be highly connected to the average value of morning peak boarding and evening peak alighting ridership. But the area of commercial land-use and the average height of buildings, were significantly positive associated with the average value of morning peak alighting and evening peak boarding ridership. (3) The area of the second-level residential land-use was rarely correlated with ridership in other regression models. Because private car ownership is still large in Guangzhou now, and some residents living in the community around the stations go to work by transit at peak time, but others are much more willing to drive their own car at non-peak time. The area of the third-level residential land-use, like urban villages, was highly positive correlated with ridership in all models, indicating that residents who live in the third-level residential land-use are the main passenger source of the Guangzhou Metro. (4) The diversity of land-use was found to have a significant impact on the passenger flow on the weekend, but was non-related to weekday. The findings can be useful for station planning, management and policymaking.Keywords: fine-scale modeling, Guangzhou city, multi-time dimensions, multi-sources spatial data, transit ridership
Procedia PDF Downloads 142296 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor
Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang
Abstract:
To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel
Procedia PDF Downloads 354295 Impact of Weather Conditions on Non-Food Retailers and Implications for Marketing Activities
Authors: Noriyuki Suyama
Abstract:
This paper discusses purchasing behavior in retail stores, with a particular focus on the impact of weather changes on customers' purchasing behavior. Weather conditions are one of the factors that greatly affect the management and operation of retail stores. However, there is very little research on the relationship between weather conditions and marketing from an academic perspective, although there is some importance from a practical standpoint and knowledge based on experience. For example, customers are more hesitant to go out when it rains than when it is sunny, and they may postpone purchases or buy only the minimum necessary items even if they do go out. It is not difficult to imagine that weather has a significant impact on consumer behavior. To the best of the authors' knowledge, there have been only a few studies that have delved into the purchasing behavior of individual customers. According to Hirata (2018), the economic impact of weather in the United States is estimated to be 3.4% of GDP, or "$485 billion ± $240 billion per year. However, weather data is not yet fully utilized. Representative industries include transportation-related industries (e.g., airlines, shipping, roads, railroads), leisure-related industries (e.g., leisure facilities, event organizers), energy and infrastructure-related industries (e.g., construction, factories, electricity and gas), agriculture-related industries (e.g., agricultural organizations, producers), and retail-related industries (e.g., retail, food service, convenience stores, etc.). This paper focuses on the retail industry and advances research on weather. The first reason is that, as far as the author has investigated the retail industry, only grocery retailers use temperature, rainfall, wind, weather, and humidity as parameters for their products, and there are very few examples of academic use in other retail industries. Second, according to NBL's "Toward Data Utilization Starting from Consumer Contact Points in the Retail Industry," labor productivity in the retail industry is very low compared to other industries. According to Hirata (2018) mentioned above, improving labor productivity in the retail industry is recognized as a major challenge. On the other hand, according to the "Survey and Research on Measurement Methods for Information Distribution and Accumulation (2013)" by the Ministry of Internal Affairs and Communications, the amount of data accumulated by each industry is extremely large in the retail industry, so new applications are expected by analyzing these data together with weather data. Third, there is currently a wealth of weather-related information available. There are, for example, companies such as WeatherNews, Inc. that make weather information their business and not only disseminate weather information but also disseminate information that supports businesses in various industries. Despite the wide range of influences that weather has on business, the impact of weather has not been a subject of research in the retail industry, where business models need to be imagined, especially from a micro perspective. In this paper, the author discuss the important aspects of the impact of weather on marketing strategies in the non-food retail industry.Keywords: consumer behavior, weather marketing, marketing science, big data, retail marketing
Procedia PDF Downloads 81294 The Development of an Anaesthetic Crisis Manual for Acute Critical Events: A Pilot Study
Authors: Jacklyn Yek, Clara Tong, Shin Yuet Chong, Yee Yian Ong
Abstract:
Background: While emergency manuals and cognitive aids (CA) have been used in high-hazard industries for decades, this has been a nascent field in healthcare. CAs can potentially offset the large cognitive load involved in crisis resource management and possibly facilitate the efficient performance of key steps in treatment. A crisis manual was developed based on local guidelines and the latest evidence-based information and introduced to a tertiary hospital setting in Singapore. Hence, the objective of this study is to evaluate the effectiveness of the crisis manual in guiding response and management of critical events. Methods: 7 surgical teams were recruited to participate in a series of simulated emergencies in high-fidelity operating room simulator over the period of April to June 2018. All teams consisted of a surgical consultant and medical officer/registrar, anesthesia consultant and medical officer/registrar; as well as a circulating, scrub and anesthetic nurse. Each team performed a simulated operation in which 1 or more of the crisis events occurred. The teams were randomly assigned to a scenario of the crisis manual and all teams were deemed to be equal in experience and knowledge. Before the simulation, teams were instructed on proper checklist use but the use of the checklist was optional. Results: 7 simulation sessions were performed, consisting of the following scenarios: Airway fire, Massive Transfusion Protocol, Malignant Hyperthermia, Eclampsia, and Difficult Airway. Out of the 7 surgical teams, 2 teams made use of the crisis manual – of which both teams had encountered a ‘Malignant Hyperthermia’ scenario. These team members reflected that the crisis manual assisted allowed them to work in a team, especially being able to involve the surgical doctors who were unfamiliar with the condition and management. A run chart plotted showed a possible upward trend, suggesting that with increasing awareness and training, staff would become more likely to initiate the use of the crisis manual. Conclusion: Despite the high volume load in this tertiary hospital, certain crises remain rare and clinicians are often caught unprepared. A crisis manual is an effective tool and easy-to-use repository that can improve patient outcome and encourage teamwork. With training, familiarity would allow clinicians to be increasingly comfortable with reaching out for the crisis manual. More simulation training would need to be conducted to determine its effectiveness.Keywords: crisis resource management, high fidelity simulation training, medical errors, visual aids
Procedia PDF Downloads 127