Search results for: advanced gastric cancer
1456 Readjustment Plans for Urbanizing the Palestinian Society in Israel
Authors: Kais Nasser, Ronit Levine-Schnur
Abstract:
Due to the prolonged negligence of planning institutions, a large portion of Palestinian localities in Israel lack basic infrastructure, development, and urbanism and suffer from a severe shortage of housing. In the past years, planning institutions in Israel began to promote master planning for Palestinian localities and for new neighborhoods. Land readjustment plans (PLIs) were the primary planning mechanism. According to Israel’s planning institutions, readjustment plans aimed to afford housing and to ensure that new neighborhoods enjoy developed infrastructure, modern construction, public lands and urbanism. However, a wide group of Palestinian landowners and stakeholders opposed PLIs. This article exposes the reasons behind such objections. Methodology: The research carried out an in-depth analysis of approximately 1,780 objections to PLIs that have been advanced in recent years. These objections reveal what really concerns landowners, what they defend indeed, and how planning institutions dealt with their arguments. Initial Findings: Exploring the objections submitted by landowners to readjustment plans reveals a conceptual and cultural conflict between landowners and the planning institutions. While planning institutions believe that these plans can transform landowners and Arab society in general from a rural, local, and conservative life to a modern- urban life, the landowners believe that planning institutions strive to change their way of life and force them to adopt an urban life without giving much attention and respect to their tradition, habits and cultural way of life.Keywords: land readjustment, culture, urbanization, minority
Procedia PDF Downloads 231455 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning
Procedia PDF Downloads 4461454 Examination of Media and Electoral Violence in Kogi State, Nigeria
Authors: Chris Ogwu Attah, Okpanachi Linus Odiji
Abstract:
An election is no doubt a universally accepted means of resolving societal problems, particularly those with political connotations. While the process has often been conducted in advanced democracies without attacks on opponents and the populace, that ambiance of political tranquillity has hardly been enjoyed in many African states. While the violent nature of polls on this part of the globe have for long been linked among other things to monetization and the zero-sum character of politics, emerging trends show how the increasing rate of electoral violence may not be unconnected to the broadcasts of violent acts in the media. Anchored on the age-long complaints about the possible deleterious effects of mass media and Plato’s concern about the effects of plays on the youth, this study aims to interrogate the relationship between media and electoral violence in Nigeria using Kogi State as a case study. While the Social Cognitive Theory is adopted to guide the study to fruition, data was elicited primarily from a multi-stage sampling arrangement in which respondents from three purposively selected locations (Anyigba, Lokoja, and Okene) were randomly selected. Using chi-square to test the assumption that media violence catalyzes electoral violence in Kogi State, it was discovered among other revelations that electoral violence increases numerically with the depiction of violence in the media. As a recommendation, therefore, this paper advocate that Civil Society Organisations, as well as relevant governmental agencies, should carry out mass political education which aims at instilling political morals on the populace, especially the youths.Keywords: electoral violence, media, media violence, violence
Procedia PDF Downloads 1531453 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 3591452 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector
Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan
Abstract:
Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector
Procedia PDF Downloads 2061451 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 541450 The Phonology and Phonetics of Second Language Intonation in Case of “Downstep”
Authors: Tayebeh Norouzi
Abstract:
This study aims to investigate the acquisition process of intonation. It examines the intonation structure of Tokyo Japanese and its realization by Iranian learners of Japanese. Seven Iranian learners of Japanese, differing in fluency, and two Japanese speakers participated in the experiment. Two sentences were used to test the phonological and phonetic characteristics of lexical pitch-accent as well as the intonation patterns produced by the speakers. Both sentences consisted of similar words with the same number of syllables and lexical pitch-accents but different syntactic structure. Speakers were asked to read each sentence three times at normal speed, and the data were analyzed by Praat. The results show that lexical pitch-accent, Accentual Phrase (AP) and AP boundary tone realization vary depending on sentence type. For sentences of type XdeYwo, the lexical pitch-accent is realized properly. However, there is a rise in AP boundary tone regardless of speakers’ level of fluency. In contrast, in sentences of type XnoYwo, the lexical pitch-accent and AP boundary tone vary depending on the speakers’ fluency level. Advanced speakers are better at grouping words into phrases and produce more native-like intonation patterns, though they are not able to realize downstep properly. The non-native speakers tried to realize proper intonation patterns by making changes in lexical accent and boundary tone.Keywords: intonation, Iranian learners, Japanese prosody, lexical accent, second language acquisition.
Procedia PDF Downloads 1691449 Kinetic Study of C₃N₄/CuWO₄: Photocatalyst towards Solar Light Inactivation of Mixed Populated Bacteria
Authors: Rimzhim Gupta, Bhanupriya Boruah, Jayant M. Modak, Giridhar Madras
Abstract:
Microbial contamination is one of the major concerns in the field of water treatment. AOP (advanced oxidation processes) is well-established method to resolve the issue of removal of contaminants in water. A Z-scheme composite g-C₃N₄/CuWO₄ was synthesized by sol-gel method for the photocatalytic inactivation of a mixed population of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). The photoinactivation was observed for different types of bacteria in the same medium together and individually in the absence of the nutrients. The lattice structures and phase purities were determined by X-ray diffraction. For morphological and topographical features, scanning electron microscopy and transmission electron microscopy analyses were carried out. The band edges of the semiconductor (valence band and conduction band) were determined by ultraviolet photoelectron microscopy. The lifetime of the charge carriers and band gap of the semiconductors were determined by time resolved florescence spectroscopy and diffused reflectance spectroscopy, respectively. The effect of weight ratio of C₃N₄ and CuWO₄ was observed by performing photocatalytic experiments. To investigate the exact mechanism and major responsible radicals for photocatalysis, scavenger studies were performed. The rate constants and order of the inactivation reactions were obtained by power law kinetics. For E. coli and S. aureus, the order of reaction and rate constants are 1.15, 0.9 and 1.39 ± 0.03 (CFU/mL)⁻⁰.¹⁵ h⁻¹, 47.95 ± 1.2 (CFU/mL)⁰.¹ h⁻¹, respectively.Keywords: z-scheme, E. coli, S. aureus, sol-gel
Procedia PDF Downloads 1481448 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 671447 Determination of in vitro Antioxidative Activity of Aster yomena (Kitam.) Honda
Authors: Hyun Young Kim, Min Jung Kim, Ji Hyun Kim, Sanghyun Lee, Eun Ju Cho
Abstract:
Oxidative stress that results from overproduction of free radicals can lead to pathogenesis of human diseases including cancer, neurodegenerative diseases, and cardiovascular disease. Aster yomena (Kitam.) Honda (A. yomena) belonging to Compositae family is a perennial plant, and it has anti-inflammatory, anti-asthmatic and anti-obesity effects. In this study, we investigated the antioxidative effect of A. yomena by measuring 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (˙OH) and superoxide radical (O₂⁻) scavenging activities in vitro. A. yomena was extracted with ethanol and then partitioned with n-hexane, methylene chloride (CH₂Cl₂), ethyl acetate (EtOAc) and n-butanol (n-BuOH). In DPPH radical scavenging assay, the concentration of A. yomena from 10 to 100μg/mL dose-dependently raised the inhibition of DPPH oxidation. Especially, EtOAc fraction of A. yomena showed the highest DPPH radical scavenging activity among other fractions. The ˙OH radical scavenging activities of the extract and four fractions of A. yomena were increased by over 80% at a concentration of 50μg/mL. Especially, the IC50 value of EtOAc fraction was 0.03 μg/mL that is the lowest value compared with the values of other fractions. In addition, we found that the EtOAc fraction of A. yomena was showed to be better at O₂⁻ radical scavenging than other fractions. Taken together these results, we suggested that A. yomena, especially EtOAc fraction, can be used as a natural antioxidant against free radicals. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B03931593).Keywords: Aster yomena (Kitam.) Honda (A. yomena), free radicals, antioxidant, EtOAc fraction
Procedia PDF Downloads 2941446 High Prevalence of Canine Mammary Gland Tumor in Nulliparous Compared with Multiparous Female Dogs
Authors: Sudson Sirivaidyapong, Ratthanan Sathienbumrungkit, Nongnapas Ruangpet, Nattanun Uaprayoon, Chawisa Wejjakul
Abstract:
Many factors initiate mammary gland tumor in female dogs such as age, breed, sex, estrous cycle, birth control and pseudopregnancy. Those factors are mostly associated with canine sex hormone. In this study, questionnaires and direct interviews were used to collect information from owners of female dogs that had been diagnosed as mammary tumors at our veterinary teaching hospital, during January 2015 to October 2016 to compare the prevalence of mammary tumor between nulliparous and multiparous female dogs. 200 dogs (from all 212 mammary tumor patients, some were excluded because of inadequate information) were included in the study, 72.5% were nulliparous and 27.5% were multiparous. The results revealed that breed, age, birth control age and birth control methods were not different in both groups; most dogs in both groups were various purebreds, geriatric age, and low incidence of hormonal contraception while 100% of multiparous dogs and 83.7% of nulliparous dogs had been neutered at over two years old. The significant differences between two groups were the frequency of pseudopregnancy and estrus which were much higher in nulliparous female dogs. It can be concluded from our study that nulliparous dogs may be more likely at higher risk of mammary tumor compared to multiparous dogs from various factors especially, the frequency of estrus and the occurrence of pseudopregnancy which related to more times of sex hormonal contact. This study was a preliminary data for further studies to determine the other risk factors of mammary gland tumors in dogs, and to our knowledge, it is the first report on a significantly higher prevalence of mammary tumor in nulliparous female dogs than that in multiparous dogs. This finding corresponds with the study of breast cancer in women but may be from different causes and factors due to the differences in estrous physiology.Keywords: canine, female dogs, nulliparous, multiparous, mammary tumor, prevalence
Procedia PDF Downloads 4711445 Chemical Composition and Antioxidant Activity of Fresh Chokeberries
Authors: Vesna Tumbas Šaponjac, Sonja Djilas, Jasna Čanadanović-Brunet, Gordana Ćetković, Jelena Vulić, Slađana Stajčić, Milica Vinčić
Abstract:
Substantial interest has been expressed in fruits and berries due to their potential favourable health effects and high content of polyphenols, especially flavonoids and anthocyanins. Chokeberries (Aronia melanocarpa) are dark berries, similar to blackcurrants, that have been used by native Americans both as a food resource and in traditional medicine for treatment of cold. Epidemiological studies revealed positive effects of chokeberries on colorectal cancer, cardiovascular diseases, and various inflammatory conditions. Chokeberries are well known as good natural antioxidants, which contain phenolic compounds, flavonoids, anthocyanidins and antioxidant vitamins. The aim of this study was to provide information on polyphenolic compounds present in fresh chokeberries as well as to determine its antioxidant activity. Individual polyphenolic compounds have been identified and quantified using HPLC/UV-Vis. Results showed that the most dominant phenolic acid was protocatechuic acid (274.23 mg/100 g FW), flavonoid rutin (319.66 mg/100 g FW) and anthocyanin cyanidin-3-galactoside (1532.68 mg/100 g FW). Generally, anthocyanins were predominant compounds in fresh chokeberry (2342.82 mg/100 g FW). Four anthocyanins have been identified in fresh chokeberry and all of them were cyanidin glicosides. Antioxidant activity was determined using spectrophotometric DPPH assay and compared to standard antioxidant compound vitamin C. The resulting EC50 value (amount of fresh chokeberries that scavenge 50% of DPPH radicals) is 0.33 mg vitamin C equivalent/100 g FW. The results of this investigation provide evidence on high contents of phenolic compounds, especially anthocyanins, in chokeberries as well as high antioxidant activity of this fruit.Keywords: chokeberry, polyphenols, antioxidant, DPPH radicals
Procedia PDF Downloads 5721444 A Review on Microbial Enhanced Oil Recovery and Controlling Its Produced Hydrogen Sulfide Effects on Reservoir and Transporting Pipelines
Authors: Ali Haratian, Soroosh Emami Meybodi
Abstract:
Using viable microbial cultures within hydrocarbon reservoirs so as to the enhancement of oil recovery through metabolic activities is exactly what we recognize as microbial enhanced oil recovery (MEOR). In similar to many other processes in industries, there are some cons and pros following with MEOR. The creation of sulfides such as hydrogen sulfide as a result of injecting the sulfate-containing seawater into hydrocarbon reservoirs in order to maintain the required reservoir pressure leads to production and growth of sulfate reducing bacteria (SRB) approximately near the injection wells, turning the reservoir into sour; however, SRB is not considered as the only microbial process stimulating the formation of sulfides. Along with SRB, thermochemical sulfate reduction or thermal redox reaction (TSR) is also known to be highly effective at resulting in having extremely concentrated zones of ?2S in the reservoir fluids eligible to cause corrosion. Owing to extent of the topic, more information on the formation of ?₂S is going to be put finger on. Besides, confronting the undesirable production of sulfide species in the reservoirs can lead to serious operational, environmental, and financial problems, in particular the transporting pipelines. Consequently, conjuring up reservoir souring control strategies on the way production of oil and gas is the only way to prevent possible damages in terms of environment, finance, and manpower which requires determining the compound’s reactivity, origin, and partitioning behavior. This article is going to provide a comprehensive review of progress made in this field and the possible advent of new strategies in this technologically advanced world of the petroleum industry.Keywords: corrosion, hydrogen sulfide, NRB, reservoir souring, SRB
Procedia PDF Downloads 2221443 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments
Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor
Abstract:
Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics
Procedia PDF Downloads 941442 Effects of Marinating with Cashew Apple Extract on the Bacterial Growth of Beef and Chicken Meat
Authors: S. Susanti, V. P. Bintoro, A. Setiadi, S. I. Santoso, D. R. Febriandi
Abstract:
Meat is a foodstuff of animal origin. It is perishable because a suitable medium for bacterial growth. That is why meat can be a potential hazard to humans. Several ways have been done to inhibit bacterial population in an effort to prolong the meat shelf-life. However, aberration sometimes happens in the practices of meat preservation, for example by using chemical material that possessed strong antibacterial activity like formaldehyde. For health reason, utilization of formaldehyde as a food preservative was forbidden because of DNA damage resulting cancer and birth defects. Therefore, it is important to seek a natural food preservative that is not harmful to the body. This study aims to reveal the potency of cashew apple as natural food preservative by measuring its antibacterial activity and marinating effect on the bacterial growth of beef and chicken meat. Antibacterial activity was measured by The Kirby-Bauer method while bacterial growth was determined by total plate count method. The results showed that inhibition zone of 10-30% cashew apple extract significantly wider compared to 0% extract on the medium of E. coli, S. aureus, S. typii, and Bacillus sp. Furthermore, beef marinated with 20-30% cashew apple extract and chicken meat marinated with 5-15% extract significantly less in the total number of bacteria compared to 0% extract. It can be concluded that marinating with 5-30% cashew apple extract can effectively inhibit the bacterial growth of beef and chicken meat. Moreover, the concentration of extracts to inhibit bacterial populations in chicken meat was reached at the lower level compared to beef. Thus, cashew apple is potential as a natural food preservative.Keywords: bacterial growth, cashew apple, marinating, meat
Procedia PDF Downloads 2761441 Concept of the Active Flipped Learning in Engineering Mechanics
Authors: Lin Li, Farshad Amini
Abstract:
The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamicsKeywords: active learning, engineering mechanics, flipped classroom, performance
Procedia PDF Downloads 2931440 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing
Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami
Abstract:
The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage
Procedia PDF Downloads 731439 Building Cardiovascular Fitness through Plyometric Training
Authors: Theresa N. Uzor
Abstract:
The word cardiovascular fitness is a topic of much interest to people of Nigeria, especially during this time, some heart diseases run in families. Cardiovascular fitness is the ability of the heart and lungs to supply-rich blood to the working muscle tissues. This type of fitness is a health-related component of physical fitness that is brought about by sustained physical activity such as plyometric training. Plyometric is a form of advanced fitness training that uses fast muscular contractions to improve power and speed in the sports performance by coaches and athletes. Plyometric training involves a rapid stretching of muscle (eccentric phase) immediately followed by a concentric or shortening action of the same muscle and connective tissue. However, the most basic example of true plyometric training is running and can be safe for a wide variety of populations. This paper focused on building cardiovascular health through Plyometric Training. The centre focus of the article is cardiovascular fitness and plyometric training with factors of cardiovascular fitness. Plyometric training at any age provides multiple benefits even beyond weight control and weight loss, decrease the risk of cardiovascular diseases, stroke, high blood pressure, diabetes, and other diseases, among other benefits of plyometric training to cardiovascular fitness. Participation in plyometric training will increase metabolism of an individual, thereby burning more calories even when at rest and reduces weight is also among the benefits of plyometric training. Some guidelines were recommended for planning plyometric training programme to minimise the chance of injury. With plyometric training in Nigeria, fortune can change for good, especially now that there has been an increase in cardiovascular diseases within the society for great savings would be saved.Keywords: aerobic, cardiovascular, concentric, stretch-shortening cycle, plyometric
Procedia PDF Downloads 1391438 Sustainable Project Management Necessarily Implemented in the Chinese Wine Market Due to Climate Variation
Authors: Ruixin Zhang, Joel Carboni, Songchenchen Gong
Abstract:
Since the Sustainable Development Goals (SDGs) officially became the 17 development goals set by the United Nations in 2015, it has become an inevitable trend in project management development globally. Since Sustainability and glob-alization are the main focus and trends in the 21st century, project management contains system-based optimization, and or-ganizational humanities, environmental protection, and economic development. As a populous country globally, with the advanced development of economy and technology, China becomes one of the biggest markets in the wine industry. However, the develop-ment of society also brings specific environmental issues. Climate changes have already brought severe impacts on the Chinese wine market, including consumer behavior, wine production activities, and organizational humanities. Therefore, the implementation of sustainable project management in Chinese wine market is essential. Surveys based analysis is the primary method to interpret how the climate variation effect the Chinese wine market and the importance of sustainable project management implementation for green market growth in China. This paper proposes the CWW Conceptual model that can be used in the wine industry, the new 7 Drivers Model, and SPM Framework to interpret the main drivers that impact project management implementation in the wine industry and to offer the directions to wine companies in China which would help them to achieve the green growth.Keywords: project management, sustainability, green growth, climate changes, Chinese wine market
Procedia PDF Downloads 1271437 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce
Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill
Abstract:
The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.Keywords: e-commerce, mass customization, virtual size and fit, web 3.0 technology
Procedia PDF Downloads 1411436 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis
Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby
Abstract:
The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.Keywords: component analysis, multivariate, slaughter, regression
Procedia PDF Downloads 1651435 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 701434 Radionuclide Contents and Exhalation Studies in Soil Samples from Sub-Mountainous Region of Jammu and Kashmir
Authors: Manpreet Kaur
Abstract:
The effect of external and internal exposure in outdoor and indoor environment can be significantly gauged by natural radionuclides. Therefore, it is a consequential to approximate the level of radionuclide contents in soil samples of any area and the risks associated with it. Rate of radon emerging from soil is also one of the prominent parameters for the assessment of radon levels in environmental. In present study, natural radionuclide contents viz. ²³²Th, ²³⁸U and ⁴⁰K and radon/thoron exhalation rates were evaluated operating thallium doped sodium iodide gamma radiation detector and advanced Smart Rn Duo technique in the soil samples from 30 villages of Jammu district, Jammu and Kashmir, India. Radon flux rate was also measured by using surface chamber technique. Results obtained with two different methods were compared to investigate the cause of emanation factor in the soil profile. The radon mass exhalation rate in the soil samples has been found varying from 15 ± 0.4 to 38 ± 0.8 mBq kg⁻¹ h⁻¹ while thoron surface exhalation rate has been found varying from 90 ± 22 to 4880 ± 280 Bq m⁻² h⁻¹. The mean value of radium equivalent activity (99 ± 27 Bq kg⁻¹) was appeared to be well within the admissible limit of 370 Bq kg⁻¹ suggested by Organization for Economic Cooperation and Development (2009) report. The values of various parameters related to radiological hazards were also calculated and all parameters have been found to be well below the safe limits given by various organizations. The outcomes pointed out that region was protected from danger as per health risks effects associated with these radionuclide contents is concerned.Keywords: absorbed dose rate, exhalation rate, human health, radionuclide
Procedia PDF Downloads 1361433 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 3091432 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 701431 The Aesthetic Manifestations of Nothingness in Contemporary Visual Arts Practice
Authors: Robyn Therese Munnick
Abstract:
This paper aims to report on a qualitative practice-based research study which explores the notion of nothingness and how it (nothingness) is the conceptual and theoretical foundation for artistic practice. Furthermore, this study explicates how the artist used their mother’s battle with cancer and the subsequent void it created as source material for the artistic expression of nothingness. The diagnosis which was followed by a physical and emotional absence of the matriarch of the artist family led to an emotional trauma that triggered a feeling of nothingness within the artist. The overarching problem in the study is thus: how this ‘nothingness’ could be expressed in visual art? Nothingness, as a product of expectation, is a notion which refers to where something used to be, should be or isn’t anymore, which attempts to grasp what is there by not being there. In attempting to express nothingness, the research aims to build on an exploration of various materials and modes utilized in order to underpin the research objectives. The primary mode of delivery for the art-making process is painting. However, through strengthening the messages and meaning of the hypothesis of nothingness within the art and research, the use of further modes and materials became pivotal. This involves the use of unconventional contrasting modes within a painting such as the cloth doily, thread, tubing, ceramics, food colour, spray paint, polyvinyl acetate paint, plaster, wooden boxes and fragments thereof. These materials and modes were vital in visualising and aestheticising the conceptual underpinnings of the research. As a result, this strengthened and emancipated the art from the traditional bounds of pure painting. Methods of data gathering took the form of artefacts, document analysis, and field notes in the form of photographic journaling. Ultimately the body of work and research validates that the idea of nothingness can be artistically explored.Keywords: conceptual, nothingness, modes, unconventional
Procedia PDF Downloads 1401430 Prevalence of Selected Cardiovascular Risk Factors Obesity among University of Venda Staff
Authors: Avhasei Dorothy Rasifudi, Josephine Mandizha
Abstract:
Cardiovascular risk factors continue to be the leading cause of death in the majority of developed and developing countries. In 2011, the World Health Organization reported that every year an estimated 17 million people globally die of CVD, representing 30% of all global deaths, particularly caused by heart attacks and strokes. The purpose of the study was to determine and describe the prevalence of selected cardiovascular risk factors among university of Venda staff. A cross-sectional study was conducted among 100 staff aged 20-65 years. The anthropometric measurements were conducted in accordance to and with standardized procedures advocated by the International Society for the Advanced Kinanthropometry. Weight, Height, waist circumference and hip circumference were measured for calculation of body mass index and waist-hip ratio. Blood pressure was measured using a Heine cuff and sphygmomanometer. Questionnaire was administered to gather demographic details and cardiovascular risk factors of hypertension and obesity. Data were analyzed using mean and standard deviation. The parameter t-test was applied to test significance level at p ≤ 0.05 between sexes. The statistical significance was set at p ≤ 0.05. The prevalence of hypertension was 23% with the highest prevalence amongst those aged 40 years and above. Factors found to be to be significantly associated with hypertension were gender, age, physical inactivity and family history. Prevalence of obesity was 43%, with the highest prevalence among those aged 40 years. The factors associated with obesity were diet, age and physical activity. The prevalence of hypertension and obesity in the study were high.Keywords: cardiovascular, prevalence, risk factors, staff
Procedia PDF Downloads 2951429 Cyberfraud Schemes: Modus Operandi, Tools and Techniques and the Role of European Legislation as a Defense Strategy
Authors: Papathanasiou Anastasios, Liontos George, Liagkou Vasiliki, Glavas Euripides
Abstract:
The purpose of this paper is to describe the growing problem of various cyber fraud schemes that exist on the internet and are currently among the most prevalent. The main focus of this paper is to provide a detailed description of the modus operandi, tools, and techniques utilized in four basic typologies of cyber frauds: Business Email Compromise (BEC) attacks, investment fraud, romance scams, and online sales fraud. The paper aims to shed light on the methods employed by cybercriminals in perpetrating these types of fraud, as well as the strategies they use to deceive and victimize individuals and businesses on the internet. Furthermore, this study outlines defense strategies intended to tackle the issue head-on, with a particular emphasis on the crucial role played by European Legislation. European legislation has proactively adapted to the evolving landscape of cyber fraud, striving to enhance cybersecurity awareness, bolster user education, and implement advanced technical controls to mitigate associated risks. The paper evaluates the advantages and innovations brought about by the European Legislation while also acknowledging potential flaws that cybercriminals might exploit. As a result, recommendations for refining the legislation are offered in this study in order to better address this pressing issue.Keywords: business email compromise, cybercrime, European legislation, investment fraud, NIS, online sales fraud, romance scams
Procedia PDF Downloads 981428 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 891427 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories
Authors: Claudio Díaz, Mabel Ortiz
Abstract:
An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.Keywords: beliefs, digital stories, preservice teachers, practicum
Procedia PDF Downloads 441