Search results for: tuning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 330

Search results for: tuning

60 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 89
59 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 91
58 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 94
57 Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator

Authors: Vikas Teotia, Sanjay Malhotra, Elina Mishra, Prashant Kumar, R. R. Singh, Priti Ukarde, P. P. Marathe, Y. S. Mayya

Abstract:

Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed.

Keywords: DTL, focusing, PMQ, proton, rate earth magnets

Procedia PDF Downloads 471
56 Investigating the Relationship between Bioethics and Sports

Authors: Franco Bruno Castaldo

Abstract:

Aim: The term bioethics is a term coined by VanPotter R ., who in 1970 thought of a discipline, capable of contributing to a better quality of human life and the cosmos. At first he intended bioethics as a wisdom capable of creating a bridge between bios and ethos and between bio-experimental science and ethical-anthropological sciences.Similarly, the modern sport is presented as a polysemic phenomenon, multidisciplinary, pluris value. From the beginning, the sport is included in the discussion of bioethical problems with doping. Today, the ethical problems of the sport are not only ascribable to doping, the medicalization of society, Techniques for enhancement, violence, Fraud, corruption, even the acceptance of anthropological transhumanist theories. Our purpose is to shed light on these issues so that there is a discernment, a fine-tuning also in educational programs, for the protection of all the sport from a scientist adrift, which would lead to an imbalance of values. Method: Reading, textual and documentary analysis, evaluation of critical examples. Results: Harold VanderZwaag, (1929-2011) in ancient times, asked: how many athletic directors have read works of sport philosophy or humanities? Along with E.A. Zeigler (North American Society for Sport Management) are recognized as pioneers of educational Sport Management. Comes the need to leave the confines of a scientific field, In order to deal with other than itself. Conclusion: The quantitative sciences attracts more funds than qualitative ones, the philosopher M. Nussbaum, has relaunched the idea that the training of students will have to be more disinterested than utilitarian, Offering arguments against the choice of anti-classical, analyzing and comparing different educational systems. schools, universities must assign a prominent place in the program of study to the humanistic, literary and artistic subjects, cultivating a participation that can activate and improve the ability to see the world through the eyes of another person. In order to form citizens who play their role in society, science and technology alone are not enough, we need disciplines that are able to cultivate critical thinking, respect for diversity, solidarity, the judgment, the freedom of expression. According to A. Camelli, the humanities faculties prepare for that life-long learning, which will characterize tomorrow's jobs.

Keywords: bioethics, management, sport, transhumanist, medicalization

Procedia PDF Downloads 512
55 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems

Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat

Abstract:

Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.

Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning

Procedia PDF Downloads 118
54 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control

Procedia PDF Downloads 136
53 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 68
52 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 105
51 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 10
50 Perception of Eco-Music From the Contents the Earth’s Sound Ecosystem

Authors: Joni Asitashvili, Eka Chabashvili, Maya Virsaladze, Alexander Chokhonelidze

Abstract:

Studying the soundscape is a major challenge in many countries of the civilized world today. The sound environment and music itself are part of the Earth's ecosystem. Therefore, researching its positive or negative impact is important for a clean and healthy environment. The acoustics of nature gave people many musical ideas, and people enriched musical features and performance skills with the ability to imitate the surrounding sound. For example, a population surrounded by mountains invented the technique of antiphonal singing, which mimics the effect of an echo. Canadian composer Raymond Murray Schafer viewed the world as a kind of musical instrument with ever-renewing tuning. He coined the term "Soundscape" as a name of a natural environmental sound, including the sound field of the Earth. It can be said that from which the “music of nature” is constructed. In the 21st century, a new field–Ecomusicology–has emerged in the field of musical art to study the sound ecosystem and various issues related to it. Ecomusicology considers the interconnections between music, culture, and nature–According to the Aaron Allen. Eco-music is a field of ecomusicology concerning with the depiction and realization of practical processes using modern composition techniques. Finding an artificial sound source (instrumental or electronic) for the piece that will blend into the soundscape of Sound Oases. Creating a composition, which sounds in harmony with the vibrations of human, nature, environment, and micro- macrocosm as a whole; Currently, we are exploring the ambient sound of the Georgian urban and suburban environment to discover “Sound Oases" and compose Eco-music works. We called “Sound Oases" an environment with a specific sound of the ecosystem to use in the musical piece as an instrument. The most interesting examples of Eco-music are the round dances, which were already created in the BC era. In round dances people would feel the united energy. This urge to get united revealed itself in our age too, manifesting itself in a variety of social media. The virtual world, however, is not enough for a healthy interaction; we created plan of “contemporary round dance” in sound oasis, found during expedition in Georgian caves, where people interacted with cave's soundscape and eco-music, they feel each other sharing energy and listen to earth sound. This project could be considered a contemporary round dance, a long improvisation, particular type of art therapy, where everyone can participate in an artistic process. We would like to present research result of our eco-music experimental performance.

Keywords: eco-music, environment, sound, oasis

Procedia PDF Downloads 59
49 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 146
48 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 328
47 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics

Authors: Kunal Bhardwaj, Christine Browne

Abstract:

With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.

Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness

Procedia PDF Downloads 122
46 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 150
45 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 190
44 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 133
43 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 38
42 Structural and Biochemical Characterization of Red and Green Emitting Luciferase Enzymes

Authors: Wael M. Rabeh, Cesar Carrasco-Lopez, Juliana C. Ferreira, Pance Naumov

Abstract:

Bioluminescence, the emission of light from a biological process, is found in various living organisms including bacteria, fireflies, beetles, fungus and different marine organisms. Luciferase is an enzyme that catalyzes a two steps oxidation of luciferin in the presence of Mg2+ and ATP to produce oxyluciferin and releases energy in the form of light. The luciferase assay is used in biological research and clinical applications for in vivo imaging, cell proliferation, and protein folding and secretion analysis. The luciferase enzyme consists of two domains, a large N-terminal domain (1-436 residues) that is connected to a small C-terminal domain (440-544) by a flexible loop that functions as a hinge for opening and closing the active site. The two domains are separated by a large cleft housing the active site that closes after binding the substrates, luciferin and ATP. Even though all insect luciferases catalyze the same chemical reaction and share 50% to 90% sequence homology and high structural similarity, they emit light of different colors from green at 560nm to red at 640 nm. Currently, the majority of the structural and biochemical studies have been conducted on green-emitting firefly luciferases. To address the color emission mechanism, we expressed and purified two luciferase enzymes with blue-shifted green and red emission from indigenous Brazilian species Amydetes fanestratus and Phrixothrix, respectively. The two enzymes naturally emit light of different colors and they are an excellent system to study the color-emission mechanism of luciferases, as the current proposed mechanisms are based on mutagenesis studies. Using a vapor-diffusion method and a high-throughput approach, we crystallized and solved the crystal structure of both enzymes, at 1.7 Å and 3.1 Å resolution respectively, using X-ray crystallography. The free enzyme adopted two open conformations in the crystallographic unit cell that are different from the previously characterized firefly luciferase. The blue-shifted green luciferase crystalized as a monomer similar to other luciferases reported in literature, while the red luciferases crystalized as an octamer and was also purified as an octomer in solution. The octomer conformation is the first of its kind for any insect’s luciferase, which might be relate to the red color emission. Structurally designed mutations confirmed the importance of the transition between the open and close conformations in the fine-tuning of the color and the characterization of other interesting mutants is underway.

Keywords: bioluminescence, enzymology, structural biology, x-ray crystallography

Procedia PDF Downloads 326
41 Cumulative Pressure Hotspot Assessment in the Red Sea and Arabian Gulf

Authors: Schröde C., Rodriguez D., Sánchez A., Abdul Malak, Churchill J., Boksmati T., Alharbi, Alsulmi H., Maghrabi S., Mowalad, Mutwalli R., Abualnaja Y.

Abstract:

Formulating a strategy for sustainable development of the Kingdom of Saudi Arabia’s coastal and marine environment is at the core of the “Marine and Coastal Protection Assessment Study for the Kingdom of Saudi Arabia Coastline (MCEP)”; that was set up in the context of the Vision 2030 by the Saudi Arabian government and aimed at providing a first comprehensive ‘Status Quo Assessment’ of the Kingdom’s marine environment to inform a sustainable development strategy and serve as a baseline assessment for future monitoring activities. This baseline assessment relied on scientific evidence of the drivers, pressures and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressure hotspot analysis developed for both national waters of the Kingdom following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. The ultimate goals of the analysis were to map and assess the main hotspots of environmental pressures, and identify priority areas for further field surveillance and for urgent management actions. The study identified maritime transport, fisheries, aquaculture, oil, gas, energy, coastal industry, coastal and maritime tourism, and urban development as the main drivers of pollution in the Saudi Arabian marine waters. For each of these drivers, pressure indicators were defined to spatially assess the potential influence of the drivers on the coastal and marine environment. A list of hotspots of 90 locations could be identified based on the assessment. Spatially grouped the list could be reduced to come up with of 10 hotspot areas, two in the Arabian Gulf, 8 in the Red Sea. The hotspot mapping revealed clear spatial patterns of drivers, pressures and hotspots within the marine environment of waters under KSA’s maritime jurisdiction in the Red Sea and Arabian Gulf. The cascading assessment approach based on the DPSIR framework ensured that the root causes of the hotspot patterns, i.e. the human activities and other drivers, can be identified. The adapted CPIA methodology allowed for the combination of the available data to spatially assess the cumulative pressure in a consistent manner, and to identify the most critical hotspots by determining the overlap of cumulative pressure with areas of sensitive biodiversity. Further improvements are expected by enhancing the data sources of drivers and pressure indicators, fine-tuning the decay factors and distances of the pressure indicators, as well as including trans-boundary pressures across the regional seas.

Keywords: Arabian Gulf, DPSIR, hotspot, red sea

Procedia PDF Downloads 138
40 Ethical Artificial Intelligence: An Exploratory Study of Guidelines

Authors: Ahmad Haidar

Abstract:

The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.

Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI

Procedia PDF Downloads 93
39 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells

Procedia PDF Downloads 62
38 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cells (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂, and two different ligands, namely oleic acid (OA)@oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA@OAm and DDAB were studied. For this purpose, ITO/PQDs, as well as ITO/PQDs/MAPI perovskite structures, were prepared by spin coating, and the effect of the ligand and oxygen plasma treatment was analysed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA@OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA@OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA@OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behaviour of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., perovskite solar cells

Procedia PDF Downloads 69
37 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
36 Creative Radio Advertising in Turkey

Authors: Mehmet Sinan Erguven

Abstract:

A number of authorities argue that radio is an outdated medium for advertising and does not have the same impact on consumers as it did in the past. This grim outlook on the future of radio has its basis in the audio-visual world that consumers now live in and the popularity of Internet-based marketing tools among advertising professionals. Nonetheless, consumers still appear to overwhelmingly prefer radio as an entertainment tool. Today, in Canada, 90% of all adults (18+) tune into the radio on a weekly basis, and they listen for 17 hours. Teens are the most challenging group for radio to capture as an audience, but still, almost 75% tune in weekly. One online radio station reaches more than 250 million registered listeners worldwide, and revenues from radio advertising in Australia are expected to grow at an annual rate of 3% for the foreseeable future. Radio is also starting to become popular again in Turkey, with a 5% increase in the listening rates compared to 2014. A major matter of concern always affecting radio advertising is creativity. As radio generally serves as a background medium for listeners, the creativity of the radio commercials is important in terms of attracting the attention of the listener and directing their focus on the advertising message. This cannot simply be done by using audio tools like sound effects and jingles. This study aims to identify the creative elements (execution formats appeals and approaches) and creativity factors of radio commercials in Turkey. As part of the study, all of the award winning radio commercials produced throughout the history of the Kristal Elma Advertising Festival were analyzed using the content analysis technique. Two judges (an advertising agency copywriter and an academic) coded the commercials. The reliability was measured according to the proportional agreement. The results showed that sound effects, jingles, testimonials, slices of life and announcements were the most common execution formats in creative Turkish radio ads. Humor and excitement were the most commonly used creative appeals while award-winning ads featured various approaches, such as surprise musical performances, audio wallpaper, product voice, and theater of the mind. Some ads, however, were found to not contain any creativity factors. In order to be accepted as creative, an ad must have at least one divergence factor, such as originality, flexibility, unusual/empathic perspective, and provocative questions. These findings, as well as others from the study, hold great value for the history of creative radio advertising in Turkey. Today, the nature of radio and its listeners is changing. As more and more people are tuning into online radio channels, brands will need to focus more on this relatively cheap advertising medium in the very near future. This new development will require that advertising agencies focus their attention on creativity in order to produce radio commercials for their customers that will differentiate them from their competitors.

Keywords: advertising, creativity, radio, Turkey

Procedia PDF Downloads 395
35 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 119
34 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 269
33 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 252
32 Controlled Synthesis of Pt₃Sn-SnOx/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Dorottya Guban, Irina Borbath, Istvan Bakos, Peter Nemeth, Andras Tompos

Abstract:

One of the greatest challenges of the implementation of polymer electrolyte membrane fuel cells (PEMFCs) is to find active and durable electrocatalysts. The cell performance is always limited by the oxygen reduction reaction (ORR) on the cathode since it is at least 6 orders of magnitude slower than the hydrogen oxidation on the anode. Therefore high loading of Pt is required. Catalyst corrosion is also more significant on the cathode, especially in case of mobile applications, where rapid changes of loading have to be tolerated. Pt-Sn bulk alloys and SnO2-decorated Pt3Sn nanostructures are among the most studied bimetallic systems for fuel cell applications. Exclusive formation of supported Sn-Pt alloy phases with different Pt/Sn ratios can be achieved by using controlled surface reactions (CSRs) between hydrogen adsorbed on Pt sites and tetraethyl tin. In this contribution our results for commercial and a home-made 20 wt.% Pt/C catalysts modified by tin anchoring via CSRs are presented. The parent Pt/C catalysts were synthesized by modified NaBH4-assisted ethylene-glycol reduction method using ethanol as a solvent, which resulted either in dispersed and highly stable Pt nanoparticles or evenly distributed raspberry-like agglomerates according to the chosen synthesis parameters. The 20 wt.% Pt/C catalysts prepared that way showed improved electrocatalytic performance in the ORR and stability in comparison to the commercial 20 wt.% Pt/C catalysts. Then, in order to obtain Sn-Pt/C catalysts with Pt/Sn= 3 ratio, the Pt/C catalysts were modified with tetraethyl tin (SnEt4) using three and five consecutive tin anchoring periods. According to in situ XPS studies in case of catalysts with highly dispersed Pt nanoparticles, pre-treatment in hydrogen even at 170°C resulted in complete reduction of the ionic tin to Sn0. No evidence of the presence of SnO2 phase was found by means of the XRD and EDS analysis. These results demonstrate that the method of CSRs is a powerful tool to create Pt-Sn bimetallic nanoparticles exclusively, without tin deposition onto the carbon support. On the contrary, the XPS results revealed that the tin-modified catalysts with raspberry-like Pt agglomerates always contained a fraction of non-reducible tin oxide. At the same time, they showed increased activity and long-term stability in the ORR than Pt/C, which was assigned to the presence of SnO2 in close proximity/contact with Pt-Sn alloy phase. It has been demonstrated that the content and dispersion of the fcc Pt3Sn phase within the electrocatalysts can be controlled by tuning the reaction conditions of CSRs. The bimetallic catalysts displayed an outstanding performance in the ORR. The preparation of a highly dispersed 20Pt/C catalyst permits to decrease the Pt content without relevant decline in the electrocatalytic performance of the catalysts.

Keywords: anode catalyst, cathode catalyst, controlled surface reactions, oxygen reduction reaction, PtSn/C electrocatalyst

Procedia PDF Downloads 231
31 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters

Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng

Abstract:

Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.

Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum

Procedia PDF Downloads 162