Search results for: predictive density functions
6511 Effect of Substrate Concentration and Pulp Density on Bioleaching of Metals from as Received Spent Refinery Catalyst
Authors: Haragobinda Srichandan, Ashish Pathak, Dong Jin Kim, Seoung-Won Lee
Abstract:
The present investigation deals with bioleaching of spent refinery catalyst (as received) using At. thiooxidans. The effect of substrate concentration and pulp density was studied. XPS analysis concluded that the metals in spent catalyst were present as both sulfide and oxides. The dissolution behavior of metals during bioleaching was different. During bioleaching, higher dissolution of Ni and lower dissolution of Mo, V and Al was observed. An increase in pulp density from 1% to 10% led to a decrease in leaching yields of all the metals. This was due to the substantial increase in medium pH at higher pulp densities. The maximum negative impact of pulp density was observed on the leaching yield of V. An increase in sulfur concentration from 0.5% to 2.5% didn’t bring positive impact on metal leaching yield. 0.5% sulfur was found to be the optimum above which no significant increase in leaching yields of metals was observed.Keywords: At. thiooxidans, pulp density, spent catalyst, bioleaching
Procedia PDF Downloads 3666510 Predictive Modelling Approaches in Food Processing and Safety
Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary
Abstract:
Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.Keywords: predictive modlleing, ann, ai, food
Procedia PDF Downloads 826509 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3866508 Interactive Multiple Functions User Interface
Authors: Manjit Singh Sidhu, Waleed Maqableh, Jee Geak Ying
Abstract:
Tangible user interfaces (TUI) that employ markers in the augmented reality (AR) environment has hampered the interactivity between the user and the software application. This is because the user lacks focus on visualizing the contents due to the interaction mechanisms whereby multiple markers may need to be used to perform a particular function. In this research, we have designed a novel TUI user interface where multiple functions could be triggered similar to a natural keyboard thus allowing user to focus more on its digital contents such as 2D/3D, text input, animation and sound. Test results of the user interface with potential users and HCI experts revealed that the multiple functions user interface was new, preferred and appreciated more as opposed to marker based user interface.Keywords: multimedia, augmented reality, engineering, user interface, visualization
Procedia PDF Downloads 4486507 The Association of Slope Failure and Lineament Density along the Ranau-Tambunan Road, Sabah, Malaysia
Authors: Norbert Simon, Rodeano Roslee, Abdul Ghani Rafek, Goh Thian Lai, Azimah Hussein, Lee Khai Ern
Abstract:
The 54 km stretch of Ranau-Tambunan (RTM) road in Sabah is subjected to slope failures almost every year. This study is focusing on identifying section of roads that are susceptible to failure based on temporal landslide density and lineament density analyses. In addition to the analyses, the rock slopes in several sections of the road were assessed using the geological strength index (GSI) technique. The analysis involved 148 landslides that were obtained in 1978, 1994, 2009 and 2011. The landslides were digitized as points and the point density was calculated based on every 1km2 of the road. The lineaments of the area was interpreted from Landsat 7 15m panchromatic band. The lineament density was later calculated based on every 1km2 of the area using similar technique with the slope failure density calculation. The landslide and lineament densities were classified into three different classes that indicate the level of susceptibility (low, moderate, high). Subsequently, the two density maps were overlap to produce the final susceptibility map. The combination of both high susceptibility classes from these maps signifies the high potential of slope failure in those locations in the future. The final susceptibility map indicates that there are 22 sections of the road that are highly susceptible. Seven rock slopes were assessed along the RTM road using the GSI technique. It was found from the assessment that rock slopes along this road are highly fractured, weathered and can be classified into fair to poor categories. The poor condition of the rock slope can be attributed to the high lineament density that presence in the study area. Six of the rock slopes are located in the high susceptibility zones. A detailed investigation on the 22 high susceptibility sections of the RTM road should be conducted due to their higher susceptibility to failure, in order to prevent untoward incident to road users in the future.Keywords: GSI, landslide, landslide density, landslide susceptibility, lineament density
Procedia PDF Downloads 3976506 Media Planning Decisions and Preferences through a Goal Programming Model: An Application to a Media Campaign for a Mature Product in Italy
Authors: Cinzia Colapinto, Davide La Torre
Abstract:
Goal Programming (GP) and its variants were applied to marketing and specific marketing issues, such as media scheduling problems in the last decades. The concept of satisfaction functions has been widely utilized in the GP model to explicitly integrate the Decision-Maker’s preferences. These preferences can be guided by the available information regarding the decision-making situation. A GP model with satisfaction functions for media planning decisions is proposed and then illustrated through a case study related to a marketing/media campaign in the Italian market.Keywords: goal programming, satisfaction functions, media planning, tourism management
Procedia PDF Downloads 3996505 Coral Reef Fishes in the Marine Protected Areas in Southern Cebu, Philippines
Authors: Christine M. Corrales, Gloria G. Delan, Rachel Luz V. Rica, Alfonso S. Piquero
Abstract:
Marine protected areas (MPAs) in the study sites were established 8-13 years ago and are presently operational. This study was conducted to gather baseline information on the diversity, density and biomass of coral reef fishes inside and outside the four marine protected areas (MPAs) of Cawayan, Dalaguete; Daan-Lungsod Guiwang, Alcoy; North Granada, Boljoon and Sta. Cruz, Ronda. Coral reef fishes in the MPAs were identified using Fish Visual Census Method. Results of the t-test showed that the mean diversity (fish species/250m2) of target and non-target reef fish species found inside and outside the MPAs were significantly different. Density (ind./1,000m2) of target species inside and outside the MPAs showed no significant difference. Similarly, density of non-target species inside and outside the MPAs also showed no significant difference. This is an indication that fish density inside and outside the MPAs were more or less of the same condition. The mean biomass (kg/1,000m2) of target species inside and outside the MPAs showed a significant difference in contrast with non-target species inside and outside the MPAs which showed a no significant difference. Higher biomass of target fish species belonging to family Caesonidae (fusiliers) and Scaridae (parrotfishes) were commonly observed inside the MPAs. Results showed that fish species were more diverse with higher density and biomass inside the MPAs than the outside area. However, fish diversity and density were mostly contributed by non-target species. Hence, long term protection and management of MPAs is needed to effectively increase fish diversity, density and biomass specifically on target fish species.Keywords: biomass, density, diversity, marine protected area, target fish species
Procedia PDF Downloads 3976504 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3
Authors: Meriem Harmel, Houari Khachai
Abstract:
We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.Keywords: DFT, fluoroperovskite, electronic structure, optical properties
Procedia PDF Downloads 4776503 Cubical Representation of Prime and Essential Prime Implicants of Boolean Functions
Authors: Saurabh Rawat, Anushree Sah
Abstract:
K Maps are generally and ideally, thought to be simplest form for obtaining solution of Boolean equations. Cubical Representation of Boolean equations is an alternate pick to incur a solution, otherwise to be meted out with Truth Tables, Boolean Laws, and different traits of Karnaugh Maps. Largest possible k- cubes that exist for a given function are equivalent to its prime implicants. A technique of minimization of Logic functions is tried to be achieved through cubical methods. The main purpose is to make aware and utilise the advantages of cubical techniques in minimization of Logic functions. All this is done with an aim to achieve minimal cost solution.rKeywords: K-maps, don’t care conditions, Boolean equations, cubes
Procedia PDF Downloads 3856502 Applications of Probabilistic Interpolation via Orthogonal Matrices
Authors: Dariusz Jacek Jakóbczak
Abstract:
Mathematics and computer science are interested in methods of 2D curve interpolation and extrapolation using the set of key points (knots). A proposed method of Hurwitz- Radon Matrices (MHR) is such a method. This novel method is based on the family of Hurwitz-Radon (HR) matrices which possess columns composed of orthogonal vectors. Two-dimensional curve is interpolated via different functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to build the orthogonal matrix operator and how to use it in a process of curve reconstruction.Keywords: 2D data interpolation, hurwitz-radon matrices, MHR method, probabilistic modeling, curve extrapolation
Procedia PDF Downloads 5256501 A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts
Authors: Arnab Majumdar, Srimani Sen
Abstract:
In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p+pnn+ DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5×108 A/m2. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06×108 A/m2.Keywords: cubic ZnB-GaN, hexagonal 4H-SiC, double drift impatt diode, millimetre wave, optimised bias current density, wide band gap semiconductor
Procedia PDF Downloads 3596500 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational
Authors: Hamza Rekab Djabri, Salah Daoud
Abstract:
The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN
Procedia PDF Downloads 986499 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking
Authors: Tohru Kawabe
Abstract:
In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression
Procedia PDF Downloads 5616498 Challenges to Effective Public Sector Management in Developing Countries: The Networking and Communication Functions of Public Sector Managers in Nigeria and Ghana
Authors: Ethelbert Chinedu Nwokorie
Abstract:
This empirical study analyzes the impact of communication and networking functions of Nigerian and Ghanaian public sector managers’ on public sector effectiveness. The focus is on which of these management functions public sector managers’ in these countries perform most, why, how and how does it affect effectiveness of public sector organizations in the two countries. This qualitative analysis was done by interviewing middle and top level managers in some selected public sector organizations in the two countries on their practical experiences. Findings reveal that ineffectiveness of public sector organizations in Ghana persists because public sector managers perform more of networking functions to promote their individual carrier success and progression in their various organizations, rather than achieving the organizations goals and objectives. In Nigeria, though majority of the interviewed public sector managers perform more communication functions than networking, they do this mostly by treating files and correspondences, instead of face-to-face communication and interaction with employees’. Hence, they hardly relate directly with their employees’ to find out how they are performing their jobs, their challenges, where they are having problems and why. The findings and recommendations of this study will help in improving effectiveness, quality and service delivery in Nigerian and Ghanaian public sector organizations and beyond.Keywords: effectiveness, communication, employees, management, networking, organization, public sector
Procedia PDF Downloads 4526497 Predictive Modeling of Bridge Conditions Using Random Forest
Authors: Miral Selim, May Haggag, Ibrahim Abotaleb
Abstract:
The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.Keywords: data analysis, random forest, predictive modeling, bridge management
Procedia PDF Downloads 216496 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method
Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen
Abstract:
West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation
Procedia PDF Downloads 3676495 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method
Authors: Kamel Al-Khaled
Abstract:
In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions
Procedia PDF Downloads 5246494 Evaluation and Association of Thyroid Function Tests with Liver Function Parameters LDL and LDH Level Before and after I131 Therapy
Authors: Sabika Rafiq, Rubaida Mehmood, Sajid Hussain, Atia Iqbal
Abstract:
Background and objectives: The pathogenesis of liver function abnormalities and cardiac dysfunction in hyperthyroid patients after I131 treatment is still unclear. This study aimed to determine the effects of radioiodine I131 on liver function parameters, lactate dehydrogenase (LDH) and low-density lipoproteins (LDL) before and after I131 therapy hyperthyroidism patients. Material & Methods: A total of 52 patients of hyperthyroidism recommended for I131were involved in this study with ages ranging from 12–65 years (mean age=38.6±14.8 & BMI=11.5±3.7). The significance of the differences between the results of 1st, 2nd and 3rd-time serum analysis was assessed by unpaired student’s t-test. Associations between the parameters were assessed by Spearman correlation analysis. Results: Significant variations were observed for thyroid profile free FT3 (p=0.04), FT4 (p=0.01), TSH (p=0.005) during the follow-up treatment. Before taking I131 (serum analyzed at 1st time), negative correlation of FT3 with AST (r=-0.458, p=0.032) and LDL (r=-0.454, p=0.039) were observed. During 2nd time (after stopping carbimazole), no correlation was assessed. Two months after the administration of I131 drops, a significant negative association of FT3 (r=-0.62, p=0.04) and FT4(r=-0.61, p=0.02) with ALB were observed. FT3(r=-0.82, p=0.00) & FT4 (r=-0.71, p=0.00) also showed negative correlation with LDL after I131 therapy. Whereas TSH showed significant positive association with ALB (r=0.61, p=0.01) and LDL (r=0.70, p=0.00) respectively. Conclusion: Current findings suggested that the association of TFTs with biochemical parameters in patients with goiter recommended for iodine therapy is an important diagnostic and therapeutic tool. The significant changes increased in transaminases and low-density lipoprotein levels after taking I131drops are alarming signs for heart and liver function abnormalities and warrant physicians' attention on an urgent basis.Keywords: hyperthyroidism, carbimazole, radioiodine I131, liver functions, low-density lipoprotein
Procedia PDF Downloads 1556493 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships
Authors: Michelle R. Sullivan
Abstract:
Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.Keywords: open relationship, polyamory, infidelity, relationship satisfaction
Procedia PDF Downloads 1596492 Historical Landscape Affects Present Tree Density in Paddy Field
Authors: Ha T. Pham, Shuichi Miyagawa
Abstract:
Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field are now rely on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape.Keywords: aerial photographs, land use change, traditional landscape, tree in paddy fields
Procedia PDF Downloads 4196491 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems
Authors: Akintayo E. Akinsunmade
Abstract:
The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development
Procedia PDF Downloads 86490 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions
Procedia PDF Downloads 5896489 The Effect of Acute Rejection and Delayed Graft Function on Renal Transplant Fibrosis in Live Donor Renal Transplantation
Authors: Wisam Ismail, Sarah Hosgood, Michael Nicholson
Abstract:
The research hypothesis is that early post-transplant allograft fibrosis will be linked to donor factors and that acute rejection and/or delayed graft function in the recipient will be independent risk factors for the development of fibrosis. This research hypothesis is to explore whether acute rejection/delay graft function has an effect on the renal transplant fibrosis within the first year post live donor kidney transplant between 1998 and 2009. Methods: The study has been designed to identify five time points of the renal transplant biopsies [0 (pre-transplant), 1 month, 3 months, 6 months and 12 months] for 300 live donor renal transplant patients over 12 years period between March 1997 – August 2009. Paraffin fixed slides were collected from Leicester General Hospital and Leicester Royal Infirmary. These were routinely sectioned at a thickness of 4 Micro millimetres for standardization. Conclusions: Fibrosis at 1 month after the transplant was found significantly associated with baseline fibrosis (p<0.001) and HTN in the transplant recipient (p<0.001). Dialysis after the transplant showed a weak association with fibrosis at 1 month (p=0.07). The negative coefficient for HTN (-0.05) suggests a reduction in fibrosis in the absence of HTN. Fibrosis at 1 month was significantly associated with fibrosis at baseline (p 0.01 and 95%CI 0.11 to 0.67). Fibrosis at 3, 6 or 12 months was not found to be associated with fibrosis at baseline (p=0.70. 0.65 and 0.50 respectively). The amount of fibrosis at 1 month is significantly associated with graft survival (p=0.01 and 95%CI 0.02 to 0.14). Rejection and severity of rejection were not found to be associated with fibrosis at 1 month. The amount of fibrosis at 1 month was significantly associated with graft survival (p=0.02) after adjusting for baseline fibrosis (p=0.01). Both baseline fibrosis and graft survival were significant predictive factors. The amount of fibrosis at 1 month was not found to be significantly associated with rejection (p=0.64) after adjusting for baseline fibrosis (p=0.01). The amount of fibrosis at 1 month was not found to be significantly associated with rejection severity (p=0.29) after adjusting for baseline fibrosis (p=0.04). Fibrosis at baseline and HTN in the recipient were found to be predictive factors of fibrosis at 1 month. (p 0.02, p <0.001 respectively). Age of the donor, their relation to the patient, the pre-op Creatinine, artery, kidney weight and warm time were not found to be significantly associated with fibrosis at 1 month. In this complex model baseline fibrosis, HTN in the recipient and cold time were found to be predictive factors of fibrosis at 1 month (p=0.01,<0.001 and 0.03 respectively). Donor age was found to be a predictive factor of fibrosis at 6 months. The above analysis was repeated for 3, 6 and 12 months. No associations were detected between fibrosis and any of the explanatory variables with the exception of the donor age which was found to be a predictive factor of fibrosis at 6 months.Keywords: fibrosis, transplant, renal, rejection
Procedia PDF Downloads 2306488 Cognitive Rehabilitation in Schizophrenia: A Review of the Indian Scenario
Authors: Garima Joshi, Pratap Sharan, V. Sreenivas, Nand Kumar, Kameshwar Prasad, Ashima N. Wadhawan
Abstract:
Schizophrenia is a debilitating disorder and is marked by cognitive impairment, which deleteriously impacts the social and professional functioning along with the quality of life of the patients and the caregivers. Often the cognitive symptoms are in their prodromal state and worsen as the illness progresses; they have proven to have a good predictive value for the prognosis of the illness. It has been shown that intensive cognitive rehabilitation (CR) leads to improvements in the healthy as well as cognitively-impaired subjects. As the majority of population in India falls in the lower to middle socio-economic status and have low education levels, using the existing packages, a majority of which are developed in the West, for cognitive rehabilitation becomes difficult. The use of technology is also restricted due to the high costs involved and the limited availability and familiarity with computers and other devices, which pose as an impedance for continued therapy. Cognitive rehabilitation in India uses a plethora of retraining methods for the patients with schizophrenia targeting the functions of attention, information processing, executive functions, learning and memory, and comprehension along with Social Cognition. Psychologists often have to follow an integrative therapy approach involving social skills training, family therapy and psychoeducation in order to maintain the gains from the cognitive rehabilitation in the long run. This paper reviews the methodologies and cognitive retaining programs used in India. It attempts to elucidate the evolution and development of methodologies used, from traditional paper-pencil based retraining to more sophisticated neuroscience-informed techniques in cognitive rehabilitation of deficits in schizophrenia as home-based or supervised and guided programs for cognitive rehabilitation.Keywords: schizophrenia, cognitive rehabilitation, neuropsychological interventions, integrated approached to rehabilitation
Procedia PDF Downloads 3636487 Density Determination by Dilution for Extra Heavy Oil Residues Obtained Using Molecular Distillation and Supercritical Fluid Extraction as Upgrading and Refining Process
Authors: Oscar Corredor, Alexander Guzman, Adan Leon
Abstract:
Density is a bulk physical property that indicates the quality of a petroleum fraction. It is also a useful property to estimate various physicochemical properties of fraction and petroleum fluids; however, the determination of density of extra heavy residual (EHR) fractions by standard methodologies, (ASTM D70) shows limitations for samples with higher densities than 1.0879 g/cm3. For this reason, a dilution methodology was developed in order to determinate density for those particular fractions, 87 (EHR) fractions were obtained as products of the fractionation of Colombian typical Vacuum Distillation Residual Fractions using molecular distillation (MD) and extraction with Solvent N-hexane in Supercritical Conditions (SFEF) pilot plants. The proposed methodology showed reliable results that can be demonstrated with the standard deviation of repeatability and reproducibility values of 0.0031 and 0.0061 g/ml respectively. In the same way, it was possible to determine densities in fractions EHR up to 1.1647g/cm3 and °API values obtained were ten times less than the water reference value.Keywords: API, density, vacuum residual, molecular distillation, supercritical fluid extraction
Procedia PDF Downloads 2666486 The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study
Authors: M. A. Lahmer, K. Guergouri
Abstract:
The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased.Keywords: ZnO, carbon, hydrogen, ferromagnetism, density functional tight binding
Procedia PDF Downloads 2856485 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer
Authors: Maziyar Nouraee
Abstract:
Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.Keywords: electronic commerce, electronic market, B2B trade, supply chain management
Procedia PDF Downloads 3926484 The Role of Executive Functions and Emotional Intelligence in Leadership: A Neuropsychological Perspective
Authors: Chrysovalanto Sofia Karatosidi, Dimitra Iordanoglou
Abstract:
The overlap of leadership skills with personality traits, beliefs, values, and the integration of cognitive abilities, analytical and critical thinking skills into leadership competencies raises the need to segregate further and investigate them. Hence, the domains of cognitive functions that contribute to leadership effectiveness should also be identified. Organizational cognitive neuroscience and neuroleadership can shed light on the study of these critical leadership skills. As the first part of our research, this pilot study aims to explore the relationships between higher-order cognitive functions (executive functions), trait emotional intelligence (EI), personality, and general cognitive ability in leadership. Twenty-six graduate and postgraduate students were assessed on neuropsychological tests that measure important aspects of executive functions (EF) and completed self-reported questionnaires about trait EI, personality, leadership styles, and leadership effectiveness. Specifically, we examined four core EF—fluency (phonemic and semantic), information updating and monitoring, working memory, and inhibition of prepotent responses. Leadership effectiveness was positively associated with phonemic fluency (PF), which involves mental flexibility, in turn, an increasingly important ability for future leaders in this rapidly changing world. Transformational leadership was positively associated with trait EI, extraversion, and openness to experience, a result that is following previous findings. The relationship between specific EF constructs and leadership effectiveness emphasizes the role of higher-order cognitive functions in the field of leadership as an individual difference. EF brings a new perspective into leadership literature by providing a direct, non-invasive, scientifically-valid connection between brain function and leadership behavior.Keywords: cognitive neuroscience, emotional intelligence, executive functions, leadership
Procedia PDF Downloads 1576483 Job Shop Scheduling: Classification, Constraints and Objective Functions
Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah
Abstract:
The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.Keywords: job-shop scheduling, classification, constraints, objective functions
Procedia PDF Downloads 4446482 Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions
Authors: Jincan Li, Mingyu Gao, Zhiwei He, Yuxiang Yang, Zhongfei Yu, Yuanyuan Liu
Abstract:
Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.Keywords: kinematic constraints, motion planning, trigonometric function, 6-DOF robots
Procedia PDF Downloads 271