Search results for: forest cover-type dataset
1778 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria
Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli
Abstract:
Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.Keywords: remote sensing, boutaleb, diversity, forest
Procedia PDF Downloads 5601777 Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m2 (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS+ software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26 mg.kg-1) in comparison to control area (Pb: 9.42±0.17, Cd: 131.71±15.77 mg.kg-1). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary.Keywords: traditional coal mining, heavy metals, pollution indicators, geostatistics, Caspian forest
Procedia PDF Downloads 1791776 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1631775 Social Capital and Adoption of Sustainable Management Practices of Non Timber Forest Product in Cameroon
Authors: Eke Bala Sophie Michelle
Abstract:
The renewable resource character of NTFPs is an opportunity to its sustainability, this study analyzed the role of social capital in the adoption of sustainable management practices of NTFPs by households in the community forest (CF) Morikouali-ye. The analysis shows that 67% of households surveyed perceive the level of degradation of NTFPs in their CF as time passes and are close to 74% for adoption of sustainable management practices of NTFPs that are domestication, sustainable management of the CF, the logging ban trees and uprooting plants, etc. 26% refused to adopt these practices estimate that, at 39% it is better to promote logging in the CF. The estimated probit model shows that social capital through trust, solidarity and social inclusion significantly influences the probability of households to adopt sustainable NTFP management practices. In addition, age, education level and income from the sale of NTFPs have a significant impact on the probability of adoption. The probability of adoption increases with the level of education and confidence among households. So should they be animated by a spirit of solidarity and trust and not let a game of competition for sustainable management of NTFPs in their CF.Keywords: community forest, social capital, NTFP, trust, solidarity, social inclusion, sustainable management
Procedia PDF Downloads 3701774 Rethinking Pathways to Shared Prosperity for Forest Communities: A Case Study of Nigerian REDD+ Readiness Project
Authors: U. Isyaku, C. Upton, J. Dickinson
Abstract:
Critical institutional approach for understanding pathways to shared prosperity among forest communities enabled questioning the underlying rational choice assumptions that have dominated traditional institutional thinking in natural resources management. Common pool resources framing assumes that communities as social groups share collective interests and values towards achieving greater development. Hence, policies related to natural resources management in the global South prioritise economic prosperity by focusing on how to maximise material benefits and improve the livelihood options of resource dependent communities. Recent trends in commodification and marketization of ecosystem goods and services into tradable natural capital and incentivising conservation are structured in this paradigm. Several researchers however, have problematized this emerging market-based model because it undermines cultural basis for protecting natural ecosystems. By exploring how forest people’s motivations for conservation differ within the context of reducing emissions from deforestation and forest degradation (REDD+) project in Nigeria, we aim to provide an alternative approach to conceptualising prosperity beyond the traditional economic thinking. Through in depth empirical work over seven months with five communities in Nigeria’s Cross River State, Q methodology was used to uncover communities’ perspectives and meanings of forest values that underpin contemporary and historic conservation practices, expected benefits, and willingness to participate in the REDD+ process. Our study finds six discourses about forest and conservation values that transcend wealth creation, poverty reduction and livelihoods. We argue that communities’ decisions about forest conservation consist of a complex mixture of economic, emotional, moral, and ecological justice concerns that constitute new meanings and dimensions of prosperity. Prosperity is thus reconfigured as having socio-cultural and psychological pathways that could be derived through place identity and attachment, connectedness to nature, family ties, and ability to participate in everyday social life. We therefore suggest that natural resources policy making and development interventions should consider institutional arrangements that also include the psycho-cultural dimensions of prosperity among diverse community groups.Keywords: critical institutionalism, Q methodology, REDD+, shared prosperity
Procedia PDF Downloads 3451773 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.Keywords: gradient boosting, XGBoost, LightGBM, CatBoost, home credit
Procedia PDF Downloads 1721772 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs
Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres
Abstract:
Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval
Procedia PDF Downloads 921771 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 631770 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 831769 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 171768 REDD+ and Conservation: Challenges and Opportunities of the Landscape Governance Approach
Authors: Richard Mbatu
Abstract:
Implementation of the Reducing Emissions from Deforestation and forest Degradation (REDD+) program will not only lead to significant net gains in greenhouse gas reduction but also gains in biodiversity conservation. However, the looming paradigm shift in the program in the form of the proposed landscape governance approach could change this inclination. The concern lies with the fact that pursue of carbon credits by governments and private entities under the proposed landscape approach could encourage obstinate land use behaviors that are detrimental to the cause of biodiversity conservation and ecosystem services. Yet, the landscape approach could also stimulate governments to develop and implement land use management policies for climate change adaptation and mitigation. Using two potential areas of land use under the proposed landscape approach – carbon farming in grasslands and carbon farming in plantations – this paper provides a balanced analytical review of conservation challenges and opportunities for forest governance and beyond under the proposed landscape approach to REDD+. The paper argues that such a balanced view will enable policymakers and other stakeholders to better present their arguments in their efforts to shape the course of the REDD+ program in the post-Paris Agreement era.Keywords: biodiversity conservation, REDD+, forest governance, grasslands, landscape approach, plantations
Procedia PDF Downloads 3681767 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1201766 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.Keywords: Hyperion, hyperspectral, sensor, Landsat-8
Procedia PDF Downloads 1241765 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2961764 Real-Time Automated Detection of Violent Content in Animated Cartoons Using YOLOv9
Authors: Omaima Jbara, Mohame Amine Omrani, Mounir Zrigui
Abstract:
The detection of violent content in animated cartoons is anessential step toward safeguarding young audiences and promoting responsible media consumption. This study introduces an automated approach to identify violent scenes in cartoons using advanced object detection models. A custom dataset comprising 1,200 frames was curated from various animated sources, focusing on four key classes: Explosion, Blood, Fight, and Gunshot. Data augmentation techniques, including rotation, scaling, and color adjustments, expanded the dataset to 2,000 frames, enhancing diversity and model generalization. YOLO versions 8, 9, and 10 were trained and evaluated on this dataset. Among these, YOLOv9 achieved the highest performance with a mean Average Precision (mAP) of 94%, demonstrating superior accuracy and robustness. These findings highlight YOLOv9’s potential as a reliable tool for detecting violent content in animated media, contributing to the development of effective content moderation systems.Keywords: cartoon violence detection, YOLO model, computer Vi sion, Real-time content analysis
Procedia PDF Downloads 51763 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance
Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu
Abstract:
Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance
Procedia PDF Downloads 1331762 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia
Authors: Zouhaier Nasr, Mohamed Nouri
Abstract:
The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.Keywords: forest, soil, carbon, climate change, Tunisia
Procedia PDF Downloads 1311761 Developing Local Wisdom to Integrate Etnobiology and Biodiversity Conservation in Mount Ungaran, Central Java Indonesia
Authors: Margareta Rahayuningsih, Nur Rahayu Utami, Tsabit A. M., Muh. Abdullah
Abstract:
Mount Ungaran is one area that has remaining natural forest in Central Java, Indonesia. Mount Ungaran consists of several habitats that supporting appropriate areas for flora, fauna, and microorganisms biodiversity, particularly of it is protected by government law and IUCN red list data. Therefore, Mount Ungaran also settled up as AZE (Alliance for Zero Extinction) and IBA (Important Bird Area). The land use for agriculture and plantation reduces forest covered areas. It is serious threat to the existence of biodiversity in Moun Ungaran. This research has been identified community local wisdom that possible to be integrated as ethno-biological research and biodiversity conservation. The result showed at least four local wisdom that possible to be integrated to ethno-biological and biodiversity conservation were Wit Weh Woh (a ceremony of life-giving tree), Grebeg Alas Susuk Wangan (a ceremony for forest protection), Iriban (a ceremony of clean water resource protection), and tingkep tandur (a ceremony for ready-harvested plant protection). It is needed ethno-biological researches of local wisdom-contained values, which essential to be developed as a strategy for biodiversity conservation in Mount Ungaran.Keywords: Mount Ungaran, local wisdom, biodiversity, fragmentation
Procedia PDF Downloads 2831760 Diversity and Ecological Analysis of Vascular Epiphytes in Gera Wild Coffee Forest, Jimma Zone of Oromia Regional State, Ethiopia
Authors: Bedilu Tafesse
Abstract:
The diversity and ecological analysis of vascular epiphytes was studied in Gera Forest in southwestern Ethiopia at altitudes between 1600 and 2400 m.a.s.l. A total area of 4.5 ha was surveyed in coffee and non-coffee forest vegetation. Fifty sampling plots, each 30 m x 30 m (900 m2), were used for the purpose of data collection. A total of 59 species of vascular epiphytes were recorded, of which 34 (59%) were holo epiphytes, two (4%) were hemi epiphytes and 22 (37%) species were accidental vascular epiphytes. To study the altitudinal distribution of vascular epiphytes, altitudes were classified into higher >2000, middle 1800-2000 and lower 1600-1800 m.a.s.l. According to Shannon-Wiener Index (H/= 3.411) of alpha diversity the epiphyte community in the study area is medium. There was a statistically significant difference between host bark type and epiphyte richness as determined by one-way ANOVA p = 0.001 < 0.05. The post-hoc test shows that there is significant difference of vascular epiphytes richness between smooth bark with rough, flack and corky bark (P =0.001< 0.05), as well as rough and cork bark (p =0.43 <0.05). However, between rough and flack bark (p = 0.753 > 0.05) and between flack and corky bark (p = 0.854 > 0.05) no significant difference of epiphyte abundance was observed. Rough bark had 38%, corky 26%, flack 25%, and only 11% vascular epiphytes abundance occurred on smooth bark. The regression correlation test, (R2 = 0.773, p = 0.0001 < 0.05), showed that the number of species of vascular epiphytes and host DBH size are positively correlated. The regression correlation test (R2 = 0.28, p = 0.0001 < 0.05), showed that the number of species and host tree height positively correlated. The host tree preference of vascular epiphytes was recorded for only Vittaria volkensii species hosted on Syzygium guineense trees. The result of similarity analysis indicated that Gera Forest showed the highest vascular epiphytic similarity (0.35) with Yayu Forest and shared the least vascular epiphytic similarity (0.295) with Harenna Forest. It was concluded that horizontal stems and branches, large and rough, flack and corky bark type trees are more suitable for vascular epiphytes seedling attachments and growth. Conservation and protection of these phorophytes are important for the survival of vascular epiphytes and increase their ecological importance.Keywords: accidental epiphytes, hemiepiphyte, holoepiphyte, phorophyte
Procedia PDF Downloads 3321759 Restoration of a Forest Catchment in Himachal Pradesh, India: An Institutional Analysis
Authors: Sakshi Gupta, Kavita Sardana
Abstract:
Management of a forest catchment involves diverse dimensions, multiple stakeholders, and conflicting interests, primarily due to the wide variety of valuable ecosystem services offered by it. Often, the coordination among different levels of formal institutions governing the catchment, local communities, as well as societal norms, taboos, customs and practices, happens to be amiss, leading to conflicting policy interventions which prove detrimental for such resources. In the case of Ala Catchment, which is a protected forest located at a distance of 9 km North-East of the town of Dalhousie, within district Chamba of Himachal Pradesh, India, and serves as one of the primary sources of public water supply for the downstream town of Dalhousie and nearby areas, several policy measures have been adopted for the restoration of the forest catchment, as well as for the improvement of public water supply. These catchment forest restoration measures include; the installation of a fence along the perimeter of the catchment, plantation of trees in the empty patches of the forest, construction of check dams, contour trenches, contour bunds, issuance of grazing permits, and installation of check posts to keep track of trespassers. While the measures adopted to address the acute shortage of public water supply in the Dalhousie region include; building and maintenance of large capacity water storage tanks, laying of pipelines, expanding public water distribution infrastructure to include water sources other than Ala Catchment Forest and introducing of five new water supply schemes for drinking water as well as irrigation. However, despite these policy measures, the degradation of the Ala catchment and acute shortage of water supply continue to distress the region. This study attempts to conduct an institutional analysis to assess the impact of policy measures for the restoration of the Ala Catchment in the Chamba district of Himachal Pradesh in India. For this purpose, the theoretical framework of Ostrom’s Institutional Assessment and Development (IAD) Framework was used. Snowball sampling was used to conduct private interviews and focused group discussions. A semi-structured questionnaire was administered to interview a total of 184 respondents across stakeholders from both formal and informal institutions. The central hypothesis of the study is that the interplay of formal and informal institutions facilitates the implementation of policy measures for ameliorating Ala Catchment, in turn improving the livelihood of people depending on this forest catchment for direct and indirect benefits. The findings of the study suggest that leakages in the successful implementation of policy measures occur at several nodes of decision-making, which adversely impact the catchment and the ecosystem services provided by it. Some of the key reasons diagnosed by the immediate analysis include; ad-hoc assignment of property rights, rise in tourist inflow increasing the pressures on water demand, illegal trespassing by local and nomadic pastoral communities for grazing and unlawful extraction of forest products, and rent-seeking by a few influential formal institutions. Consequently, it is indicated that the interplay of formal and informal institutions may be obscuring the consequentiality of the policy measures on the restoration of the catchment.Keywords: catchment forest restoration, institutional analysis and development framework, institutional interplay, protected forest, water supply management
Procedia PDF Downloads 971758 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators
Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros
Abstract:
Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis
Procedia PDF Downloads 1401757 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 821756 Climate Changes in Albania and Their Effect on Cereal Yield
Authors: Lule Basha, Eralda Gjika
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest
Procedia PDF Downloads 921755 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model
Authors: Ghazal Faraj, Andras Micsik
Abstract:
The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment
Procedia PDF Downloads 1471754 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1041753 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 111752 Wreathed Hornbill (Rhyticeros undulatus) on Mount Ungaran: Are their Habitat Threatened?
Authors: Margareta Rahayuningsih, Nugroho Edi K., Siti Alimah
Abstract:
Wreathed Hornbill (Rhyticeros undulatus) is the one of hornbill species (Family: Bucerotidae) that found on Mount Ungaran. In the preservation or planning in situ conservation of Wreathed Hornbill require the habitat condition data. The objective of the research was to determine the land cover change on Mount Ungaran using satellite image data and GIS. Based on the land cover data on 1999-2009 the research showed that the primer forest on Mount Ungaran was decreased almost 50%, while the seconder forest, tea and coffee plantation, and the settlement were increased.Keywords: GIS, Mount Ungaran, threatened habitat, Wreathed Hornbill (Rhyticeros undulatus)
Procedia PDF Downloads 3601751 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches
Authors: Arpit Rai
Abstract:
In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.Keywords: self-supervised learning, representation learning, computer vision, generalization
Procedia PDF Downloads 891750 Volume Estimation of Trees: An Exploratory Study on Pterocarpus erinaceus Logging Operations within Forest Transition and Savannah Ecological Zones of Ghana
Authors: Albert Kwabena Osei Konadu
Abstract:
Pterocarpus erinaceus, also known as Rosewood, is tropical wood, endemic in forest savannah transition zones within the middle and northern portion of Ghana. Its economic viability has made it increasingly popular and in high demand, leading to widespread conservation concerns. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective, sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.Keywords: convention on international trade in endangered species, cubic volume formula, forest transition savannah zones, pterocarpus erinaceus, smallian’s volume formula, tree information form
Procedia PDF Downloads 1081749 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling
Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari
Abstract:
A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis
Procedia PDF Downloads 147