Search results for: energy efficient clustering
12416 Coding of RMAC and Its Theoretical and Simulation-Based Performance Comparison with SMAC
Authors: Hamida Qumber Ali, Waseem Muhammad Arain, Shama Siddiqui, Sayeed Ghani
Abstract:
We present an implementing of RMAC in TinyOS 1.x. RMAC is a cross layer and Duty-cycle MAC protocols that was proposed to provide energy efficient transmission services for wireless sensor networks. The protocol has a unique and efficient packet transmission scheduling mechanism that enables it to overcome delivery latency and overcome traffic congestion. Design details and implementation challenges are divulged. Experiments are conducted to show the correctness of our implementation with numerous assumptions. Simulations are performed to compare the performance of RMAC and SMAC. Our results show that RMAC outperforms SMAC in energy efficiency and delay.Keywords: MAC protocol, performance, RMAC, wireless sensor networks
Procedia PDF Downloads 32512415 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement
Authors: Wang Lin, Li Zhiqiang
Abstract:
The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm
Procedia PDF Downloads 18712414 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches
Authors: Dimitrios I. Tselentis, Simon P. Washington
Abstract:
Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches
Procedia PDF Downloads 48912413 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 9012412 Loss Analysis by Loading Conditions of Distribution Transformers
Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun
Abstract:
Efficient use of energy, with the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system were analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.Keywords: distribution system, distribution transformer, power cable, technical losses
Procedia PDF Downloads 65212411 Effect of Energy Management Practices on Sustaining Competitive Advantage among Manufacturing Firms: A Case of Selected Manufacturers in Nairobi, Kenya
Authors: Henry Kiptum Yatich, Ronald Chepkilot, Aquilars Mutuku Kalio
Abstract:
Studies on energy management have focused on environmental conservation, reduction in production and operation expenses. However, transferring gains of energy management practices to competitive advantage is importance to manufacturers in Kenya. Success in managing competitive advantage arises out of a firm’s ability in identifying and implementing actions that can give the company an edge over its rivals. Manufacturing firms in Kenya are the highest consumers of both electricity and petroleum products. In this regard, the study posits that transfer of the gains of energy management practices to competitive advantage is imperative. The study was carried in Nairobi and its environs, which hosts the largest number of manufacturers. The study objectives were; to determine the level of implementing energy management regulations on sustaining competitive advantage, to determine the level of implementing company energy management policy on competitive advantage, to examine the level of implementing energy efficient technology on sustaining competitive advantage, and to assess the percentage energy expenditure on sustaining competitive advantage among manufacturing firms. The study adopted a survey research design, with a study population of 145,987. A sample of 384 respondents was selected randomly from 21 proportionately selected firms. Structured questionnaires were used to collect data. Data analysis was done using descriptive statistics (mean and standard deviations) and inferential statistics (correlation, regression, and T-test). Data is presented using tables and diagrams. The study found that Energy Management Regulations, Company Energy Management Policies, and Energy Expenses are significant predictors of Competitive Advantage (CA). However, Energy Efficient Technology as a component of Energy Management Practices did not have a significant relationship with Competitive Advantage. The study revealed that the level of awareness in the sector stood at 49.3%. Energy Expenses in the sector stood at an average of 10.53% of the firm’s total revenue. The study showed that gains from energy efficiency practices can be transferred to competitive strategies so as to improve firm competitiveness. The study recommends that manufacturing firms should consider energy management practices as part of its strategic agenda in assessing and reviewing their energy management practices as possible strategies for sustaining competitiveness. The government agencies such as Energy Regulatory Commission, the Ministry of Energy and Petroleum, and Kenya Association of Manufacturers should enforce the energy management regulations 2012, and with enhanced stakeholder involvement and sensitization so as promote sustenance of firm competitiveness. Government support in providing incentives and rebates for acquisition of energy efficient technologies should be pursued. From the study limitation, future experimental and longitudinal studies need to be carried out. It should be noted that energy management practices yield enormous benefits to all stakeholders and that the practice should not be considered a competitive tool but rather as a universal practice.Keywords: energy, efficiency, management, guidelines, policy, technology, competitive advantage
Procedia PDF Downloads 38412410 Analysing Industry Clustering to Develop Competitive Advantage for Wualai Silver Handicraft
Authors: Khanita Tumphasuwan
Abstract:
The Wualai community of Northern Thailand represents important intellectual and social capital and their silver handicraft products are desirable tourist souvenirs within Chiang Mai Province. This community has been in danger of losing this social and intellectual capital due to the application of an improper tool, the Scottish Enterprise model of clustering. This research aims to analyze and increase its competitive advantages for preventing the loss of social and intellectual capital. To improve the Wualai’s competitive advantage, analysis is undertaken using a Porterian cluster approach, including the diamond model, five forces model and cluster mapping. Research results suggest that utilizing the community’s Buddhist beliefs can foster collaboration between community members and is the only way to improve cluster effectiveness, increase competitive advantage, and in turn conserve the Wualai community.Keywords: industry clustering, silver handicraft, competitive advantage, intellectual capital, social capital
Procedia PDF Downloads 56612409 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble
Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi
Abstract:
Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble
Procedia PDF Downloads 22112408 Investigating Factors Influencing Generation Z’s Pro-Environmental Behavior to Support the Energy Transition in Jakarta, Indonesia
Authors: Phimsupha Kokchang, Divine Ifransca Wijaya
Abstract:
The energy transition is crucial for mitigating climate change and achieving sustainable development and resilience. As the energy transition advances, generation Z is entering the economic world and will soon be responsible for taking care of the environment. This study aims to investigate the factors influencing generation Z’s pro-environmental behavior to support the energy transition. The theory of planned behavior approach was combined with the pro-environmental behavior concept to examine generation Z’s support toward the energy transition through participating in activism, using energy from renewable sources, opting for energy-efficient utilities or vehicles, and influencing others. Data were collected through an online questionnaire of 400 respondents aged 18-26 living in Jakarta, Indonesia. Partial least square structural equation modeling (PLS-SEM) using SmartPLS 3.0 software was used to analyze the reliability and validity of the measurement model. The results show that attitude, subjective norms, and perceived behavior control positively correlate with generation Z’s pro-environmental behavior to support the energy transition. This finding could enhance understanding and provide insights to formulate effective strategies and policies to increase generation Z’s support towards the energy transition. This study contributes to the energy transition discussion as it is included in the Sustainable Development Goals, as well as pro-environmental behavior and theory of planned behavior literature.Keywords: energy transition, pro-environmental behavior, theory of planned behavior, generation Z
Procedia PDF Downloads 11812407 Clustering for Detection of the Population at Risk of Anticholinergic Medication
Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh
Abstract:
Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status
Procedia PDF Downloads 21212406 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 9712405 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading
Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed
Abstract:
Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum
Procedia PDF Downloads 38812404 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 9612403 Performance Analysis of Absorption Power Cycle under Different Source Temperatures
Authors: Kyoung Hoon Kim
Abstract:
The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper, a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.Keywords: ammonia-water mixture, Kalina cycle, low-grade heat source, source temperature
Procedia PDF Downloads 45812402 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course
Authors: Lucia Ceccherini Nelli, Alessandra Donato
Abstract:
The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.Keywords: expert in energy, energy auditing, public buildings, thermal analysis
Procedia PDF Downloads 18912401 FESA: Fuzzy-Controlled Energy-Efficient Selective Allocation and Reallocation of Tasks Among Mobile Robots
Authors: Anuradha Banerjee
Abstract:
Energy aware operation is one of the visionary goals in the area of robotics because operability of robots is greatly dependent upon their residual energy. Practically, the tasks allocated to robots carry different priority and often an upper limit of time stamp is imposed within which the task needs to be completed. If a robot is unable to complete one particular task given to it the task is reallocated to some other robot. The collection of robots is controlled by a Central Monitoring Unit (CMU). Selection of the new robot is performed by a fuzzy controller called Task Reallocator (TRAC). It accepts the parameters like residual energy of robots, possibility that the task will be successfully completed by the new robot within stipulated time, distance of the new robot (where the task is reallocated) from distance of the old one (where the task was going on) etc. The proposed methodology increases the probability of completing globally assigned tasks and saves huge amount of energy as far as the collection of robots is concerned.Keywords: energy-efficiency, fuzzy-controller, priority, reallocation, task
Procedia PDF Downloads 31612400 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data
Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei
Abstract:
The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning
Procedia PDF Downloads 13812399 Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert
Authors: A. Sherif, A. El Zafarany, R. Arafa
Abstract:
Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for day-lighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.Keywords: energy, hospital, intensive care units, shading
Procedia PDF Downloads 28912398 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach
Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna
Abstract:
This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS
Procedia PDF Downloads 23112397 Sustainability and Energy-Efficiency in Buildings: A review
Authors: Medya Fathi
Abstract:
Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.Keywords: sustainability, energy performance, energy efficiency, buildings, review
Procedia PDF Downloads 7112396 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 30212395 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 27412394 Improvising Grid Interconnection Capabilities through Implementation of Power Electronics
Authors: Ashhar Ahmed Shaikh, Ayush Tandon
Abstract:
The swift reduction of fossil fuels from nature has crucial need for alternative energy sources to cater vital demand. It is essential to boost alternative energy sources to cover the continuously increasing demand for energy while minimizing the negative environmental impacts. Solar energy is one of the reliable sources that can generate energy. Solar energy is freely available in nature and is completely eco-friendly, and they are considered as the most promising power generating sources due to their easy availability and other advantages for the local power generation. This paper is to review the implementation of power electronic devices through Solar Energy Grid Integration System (SEGIS) to increase the efficiency. This paper will also concentrate on the future grid infrastructure and various other applications in order to make the grid smart. Development and implementation of a power electronic devices such as PV inverters and power controllers play an important role in power supply in the modern energy economy. Solar Energy Grid Integration System (SEGIS) opens pathways for promising solutions for new electronic and electrical components such as advanced innovative inverter/controller topologies and their functions, economical energy management systems, innovative energy storage systems with equipped advanced control algorithms, advanced maximum-power-point tracking (MPPT) suited for all PV technologies, protocols and the associated communications. In addition to advanced grid interconnection capabilities and features, the new hardware design results in small size, less maintenance, and higher reliability. The SEGIS systems will make the 'advanced integrated system' and 'smart grid' evolutionary processes to run in a better way. Since the last few years, there was a major development in the field of power electronics which led to more efficient systems and reduction of the cost per Kilo-watt. The inverters became more efficient and had reached efficiencies in excess of 98%, and commercial solar modules have reached almost 21% efficiency.Keywords: solar energy grid integration systems, smart grid, advanced integrated system, power electronics
Procedia PDF Downloads 18412393 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering
Authors: K. Umbleja, M. Ichino
Abstract:
Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis
Procedia PDF Downloads 16212392 Investigation of Efficient Production of ¹³⁵La for the Auger Therapy Using Medical Cyclotron in Poland
Authors: N. Zandi, M. Sitarz, J. Jastrzebski, M. Vagheian, J. Choinski, A. Stolarz, A. Trzcinska
Abstract:
¹³⁵La with the half-life of 19.5 h can be considered as a good candidate for Auger therapy. ¹³⁵La decays almost 100% by electron capture to the stable ¹³⁵Ba. In this study, all important possible reactions leading to ¹³⁵La production are investigated in details, and the corresponding theoretical yield for each reaction using the Monte-Carlo method (MCNPX code) are presented. Among them, the best reaction based on the cost-effectiveness and production yield regarding Poland facilities equipped with medical cyclotron has been selected. ¹³⁵La is produced using 16.5 MeV proton beam of general electric PET trace cyclotron through the ¹³⁵Ba(p,n)¹³⁵La reaction. Moreover, for a consistent facilitating comparison between the theoretical calculations and the experimental measurements, the beam current and also the proton beam energy is measured experimentally. Then, the obtained proton energy is considered as the entrance energy for the theoretical calculations. The production yield finally is measured and compared with the results obtained using the MCNPX code. The results show the experimental measurement and the theoretical calculations are in good agreement.Keywords: efficient ¹³⁵La production, proton cyclotron energy measurement, MCNPX code, theoretical and experimental production yield
Procedia PDF Downloads 14212391 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 14412390 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 28612389 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance
Authors: Berfin Yildiz
Abstract:
These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation
Procedia PDF Downloads 14112388 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic
Procedia PDF Downloads 31112387 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships
Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis
Abstract:
The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture
Procedia PDF Downloads 78