Search results for: expected utility maximization
3690 Measuring Banking Risk
Authors: Mike Tsionas
Abstract:
The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS
Procedia PDF Downloads 3493689 Optimal Investment and Consumption Decision for an Investor with Ornstein-Uhlenbeck Stochastic Interest Rate Model through Utility Maximization
Authors: Silas A. Ihedioha
Abstract:
In this work; it is considered that an investor’s portfolio is comprised of two assets; a risky stock which price process is driven by the geometric Brownian motion and a risk-free asset with Ornstein-Uhlenbeck Stochastic interest rate of return, where consumption, taxes, transaction costs and dividends are involved. This paper aimed at the optimization of the investor’s expected utility of consumption and terminal return on his investment at the terminal time having power utility preference. Using dynamic optimization procedure of maximum principle, a second order nonlinear partial differential equation (PDE) (the Hamilton-Jacobi-Bellman equation HJB) was obtained from which an ordinary differential equation (ODE) obtained via elimination of variables. The solution to the ODE gave the closed form solution of the investor’s problem. It was found the optimal investment in the risky asset is horizon dependent and a ratio of the total amount available for investment and the relative risk aversion coefficient.Keywords: optimal, investment, Ornstein-Uhlenbeck, utility maximization, stochastic interest rate, maximum principle
Procedia PDF Downloads 2253688 Utility Analysis of API Economy Based on Multi-Sided Platform Markets Model
Authors: Mami Sugiura, Shinichi Arakawa, Masayuki Murata, Satoshi Imai, Toru Katagiri, Motoyoshi Sekiya
Abstract:
API (Application Programming Interface) economy, where many participants join/interact and form the economy, is expected to increase collaboration between information services through API, and thereby, it is expected to increase market value from the service collaborations. In this paper, we introduce API evaluators, which are the activator of API economy by reviewing and/or evaluating APIs, and develop a multi-sided API economy model that formulates interactions among platform provider, API developers, consumers, and API evaluators. By obtaining the equilibrium that maximizes utility of all participants, the impact of API evaluators on the utility of participants in the API economy is revealed. Numerical results show that, with the existence of API evaluators, the number of developers and consumers increase by 1.5% and the utility of platformer increases by 2.3%. We also discuss the strategies of platform provider to maximize its utility under the existence of API evaluators.Keywords: API economy, multi-sided markets, API evaluator, platform, platform provider
Procedia PDF Downloads 1863687 Handling Missing Data by Using Expectation-Maximization and Expectation-Maximization with Bootstrapping for Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, A. H. M. R. Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in two types of LFRM namely the full model of LFRM and in LFRM when the slope is estimated using a nonparametric method. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 4553686 Modern Imputation Technique for Missing Data in Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, Rahmatullah Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in the LFRM. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 3993685 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering
Procedia PDF Downloads 7153684 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection
Authors: Christina Wainikka, Besrat Tesfaye
Abstract:
Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.Keywords: baltic sea region, comparative law, SME, utility model
Procedia PDF Downloads 1143683 Preference Aggregation and Mechanism Design in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium
Procedia PDF Downloads 1133682 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 2393681 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm
Procedia PDF Downloads 1453680 Investment Decision among Public Sector Retirees: A Behavioural Finance View
Authors: Bisi S. Olawoyin
Abstract:
This study attempts an exploration into behavioural finance in which the traditional assumptions of expected utility maximization with rational investors in efficient markets are dropped. It reviews prior research and evidence about how psychological biases affect investors behaviour and stock selection. This study examined the relationship between demographic variables and financial behaviour biases among public sector retirees who invested in the Nigerian Stock Exchange prior to their retirement. By using questionnaire survey method, a total of 214 valid convenient samples were collected in order to determine how specific demographic and psychological trait affect stock selection between dividend paying and non-dividend paying stocks. Descriptive statistics and OLS were used to analyse the results. Findings showed that most of the retirees prefer dividend paying stocks in few years preceding their retirement but still hold on to their non-dividend paying stock on retirement. A significant difference also exists between senior and junior retirees in preference for non-dividend paying stocks. These findings are consistent with the clientele theories of dividend.Keywords: behavioural finance, clientele theories, dividend paying stocks, stock selection
Procedia PDF Downloads 1423679 Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm
Authors: Engy Adel Mohamed, Yasser Gamal-Eldin Hegazy
Abstract:
This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.Keywords: distributed generators, firefly algorithm, IEEE 37-node feeder, profit maximization
Procedia PDF Downloads 4423678 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets
Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi
Abstract:
Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.Keywords: data sets, recommendation system, utility item sets, frequent item sets mining
Procedia PDF Downloads 2933677 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.Keywords: discrete tomography, exactly-1-4-adjacency, simulated annealing, binary matrices
Procedia PDF Downloads 4063676 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions
Authors: Yuyang Cheng, Marcos Escobar-Anel
Abstract:
This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, verication theorem
Procedia PDF Downloads 1523675 Stochastic Programming and C-Somga: Animal Ration Formulation
Authors: Pratiksha Saxena, Dipti Singh, Neha Khanna
Abstract:
A self-organizing migrating genetic algorithm(C-SOMGA) is developed for animal diet formulation. This paper presents animal diet formulation using stochastic and genetic algorithm. Tri-objective models for cost minimization and shelf life maximization are developed. These objectives are achieved by combination of stochastic programming and C-SOMGA. Stochastic programming is used to introduce nutrient variability for animal diet. Self-organizing migrating genetic algorithm provides exact and quick solution and presents an innovative approach towards successful application of soft computing technique in the area of animal diet formulation.Keywords: animal feed ration, feed formulation, linear programming, stochastic programming, self-migrating genetic algorithm, C-SOMGA technique, shelf life maximization, cost minimization, nutrient maximization
Procedia PDF Downloads 4423674 Research on Morning Commuting Behavior under Autonomous Vehicle Environment Based on Activity Method
Authors: Qing Dai, Zhengkui Lin, Jiajia Zhang, Yi Qu
Abstract:
Based on activity method, this paper focuses on morning commuting behavior when commuters travel with autonomous vehicles (AVs). Firstly, a net utility function of commuters is constructed by the activity utility of commuters at home, in car and at workplace, and the disutility of travel time cost and that of schedule delay cost. Then, this net utility function is applied to build an equilibrium model. Finally, under the assumption of constant marginal activity utility, the properties of equilibrium are analyzed. The results show that, in autonomous driving, the starting and ending time of morning peak and the number of commuters who arrive early and late at workplace are the same as those in manual driving. In automatic driving, however, the departure rate of arriving early at workplace is higher than that of manual driving, while the departure rate of arriving late is just the opposite. In addition, compared with manual driving, the departure time of arriving at workplace on time is earlier and the number of people queuing at the bottleneck is larger in automatic driving. However, the net utility of commuters and the total net utility of system in automatic driving are greater than those in manual driving.Keywords: autonomous cars, bottleneck model, activity utility, user equilibrium
Procedia PDF Downloads 1113673 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 4753672 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 823671 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition
Procedia PDF Downloads 4573670 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region
Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha
Abstract:
Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.Keywords: climate change, migration, rural productivity, semiarid region
Procedia PDF Downloads 3503669 Suboptimal Retiree Allocations with Housing
Authors: Asiye Aydilek, Harun Aydilek
Abstract:
We investigate the costs of various suboptimal allocations in housing, consumption, bond and stock holdings of a retiree in a setting with recursive utility, considering the extensive empirical evidence that investors make suboptimal decisions in different ways. We find that suboptimal stock holdings impose only modest costs on the retiree. This may have a merit in explaining the limited stock investment in the data. The cost of suboptimal bond holdings is higher than that of stocks, but still small. This may partially explain why many more people hold bonds compared to stocks. We find that positive deviations from the optimal level are less costly relative to the negative ones in suboptimal housing allocations. This may help us to clarify why the elderly are over consuming housing, as seen in the housing data. The cost of suboptimal consumption is quite high and the highest of all. Our paper suggests that, in terms of welfare, the decisions of how much of liquid wealth to use for consumption and for saving are more important than the decision about the composition of liquid savings. Suboptimal stock holdings are twice more costly in power utility and suboptimal bond holdings are twenty times more costly in recursive utility. Recursive utility is superior to power utility in terms of rationalizing many people's preference for bonds instead of stocks in investment.Keywords: housing, recursive utility, retirement, suboptimal decisions, welfare cost
Procedia PDF Downloads 3173668 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study
Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu
Abstract:
With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray
Procedia PDF Downloads 7303667 Improving Electrical Safety through Enhanced Work Permits
Authors: Nuwan Karunarathna, Hemali Seneviratne
Abstract:
Distribution Utilities inherently present electrical hazards for their workers in addition to the general public especially due to bare overhead lines spreading out over a large geographical area. Therefore, certain procedures such as; de-energization, verification of de-energization, isolation, lock-out tag-out and earthing are carried out to ensure safe working conditions when conducting maintenance work on de-energized overhead lines. However, measures must be taken to coordinate the above procedures and to ensure successful and accurate execution of those procedures. Issuing of 'Work Permits' is such a measure that is used by the Distribution Utility considered in this paper. Unfortunately, the Work Permit method adopted by the Distribution Utility concerned here has not been successful in creating the safe working conditions as expected which was evidenced by four (4) number of fatalities of workers due to electrocution occurred in the Distribution Utility from 2016 to 2018. Therefore, this paper attempts to identify deficiencies in the Work Permit method and related contributing factors through careful analysis of the four (4) fatalities and work place practices to rectify the short comings to prevent future incidents. The analysis shows that the present level of coordination between the 'Authorized Person' who issues the work permit and the 'Competent Person' who performs the actual work is grossly inadequate to achieve the intended safe working conditions. The paper identifies the need of active participation of a 'Control Person' who oversees the whole operation from a bird’s eye perspective and recommends further measures that are derived through the analysis of the fatalities to address the identified lapses in the current work permit system.Keywords: authorized person, competent person, control person, de-energization, distribution utility, isolation, lock-out tag-out, overhead lines, work permit
Procedia PDF Downloads 1313666 Fuzzy Vehicle Routing Problem for Extreme Environment
Authors: G. Sirbiladze, B. Ghvaberidze, B. Matsaberidze
Abstract:
A fuzzy vehicle routing problem is considered in the possibilistic environment. A new criterion, maximization of expectation of reliability for movement on closed routes is constructed. The objective of the research is to implement a two-stage scheme for solution of this problem. Based on the algorithm of preferences on the first stage, the sample of so-called “promising” routes will be selected. On the second stage, for the selected promising routes new bi-criteria problem will be solved - minimization of total traveled distance and maximization of reliability of routes. The problem will be stated as a fuzzy-partitioning problem. Two possible solutions of this scheme are considered.Keywords: vehicle routing problem, fuzzy partitioning problem, multiple-criteria optimization, possibility theory
Procedia PDF Downloads 5473665 Framework for Implementation of National Electrical Safety Grounding Standards for Communication Infrastructure
Authors: Atif Mahmood, Mohammad Inayatullah Khan Babar
Abstract:
Communication infrastructure has been installed, operated, and maintained all over the world according to defined electrical safety standards for separate or joint structures. These safety standards have been set for the safeguard of public, utility workers (employees and contractors), utility facilities, electrical communication equipment’s connected to the utility facilities and other facilities or premise adjacent to utility facilities. Different communication utilities in Pakistan use standards of different countries due to the absence of Common National Electrical Safety Standards of Pakistan. It is really important to devise a framework for implementation of a uniform standard for strict compliance. In this context, it is important to explore the compliance of safety standards for communication conductors and equipment for separate or joint structures for which NESC standards are taken as reference. Specific reference to grounding techniques including grounding AC/DC systems and its frames, leaving Fences, Messenger wires and special circuits used for the protection for lightning etc, ungrounded so recommendations are also given after in-depth analysis of current technical practices for the installation and maintenance of communication infrastructure.Keywords: utility facilities, grounding electrodes, special circuits, grounding conductor
Procedia PDF Downloads 3483664 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring
Authors: Daniel Fundi Murithi
Abstract:
Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring
Procedia PDF Downloads 1633663 The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach
Authors: Ho Yuan-Hong, Huang Chiung-Ju
Abstract:
This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a "debt"⁄"GDP" ratio of 0.2, increases in the "debt"⁄"GDP " ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the "debt"⁄"GDP" ratio is greater than 40%, the welfare will be negative and result in welfare loss.Keywords: debt sustainability, optimal debt ceiling, dynamic stochastic general equilibrium, welfare maximization
Procedia PDF Downloads 3573662 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 763661 Technology of Gyro Orientation Measurement Unit (Gyro Omu) for Underground Utility Mapping Practice
Authors: Mohd Ruzlin Mohd Mokhtar
Abstract:
At present, most operators who are working on projects for utilities such as power, water, oil, gas, telecommunication and sewerage are using technologies e.g. Total station, Global Positioning System (GPS), Electromagnetic Locator (EML) and Ground Penetrating Radar (GPR) to perform underground utility mapping. With the increase in popularity of Horizontal Directional Drilling (HDD) method among the local authorities and asset owners, most of newly installed underground utilities need to use the HDD method. HDD method is seen as simple and create not much disturbance to the public and traffic. Thus, it was the preferred utilities installation method in most of areas especially in urban areas. HDDs were installed much deeper than exiting utilities (some reports saying that HDD is averaging 5 meter in depth). However, this impacts the accuracy or ability of existing underground utility mapping technologies. In most of Malaysia underground soil condition, those technologies were limited to maximum of 3 meter depth. Thus, those utilities which were installed much deeper than 3 meter depth could not be detected by using existing detection tools. The accuracy and reliability of existing underground utility mapping technologies or work procedure were in doubt. Thus, a mitigation action plan is required. While installing new utility using Horizontal Directional Drilling (HDD) method, a more accurate underground utility mapping can be achieved by using Gyro OMU compared to existing practice using e.g. EML and GPR. Gyro OMU is a method to accurately identify the location of HDD thus this mapping can be used or referred to avoid those cost of breakdown due to future HDD works which can be caused by inaccurate underground utility mapping.Keywords: Gyro Orientation Measurement Unit (Gyro OMU), Horizontal Directional Drilling (HDD), Ground Penetrating Radar (GPR), Electromagnetic Locator (EML)
Procedia PDF Downloads 140