Search results for: entity extraction
2269 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 812268 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1132267 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 162266 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 142265 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence
Authors: Rajeev Kumar, Harishankar Kumar
Abstract:
Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a distinct, system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights and enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence
Procedia PDF Downloads 02264 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 952263 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction
Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai
Abstract:
The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction
Procedia PDF Downloads 4342262 Corporate Law and Its View Point of Locking in Capital
Authors: Saad Saeed Althiabi
Abstract:
This paper discusses the corporate positioning and how it became popular as a way to systematize production because of the unique manner in which incorporation legalized organizers to secure financial capital through locking it in. The power to lock in capital comes from the fact that a corporate exists as a separate legal entity, whose survival and governance are separated from any of its participants. The law essentially creates a different legal person when a corporation is created. Although this idea has been played down in the legal learning of the last decades in favor of the view that a corporation is purely something through which natural persons interrelate, recent legal research has begun to reassess the importance of entity status. Entity status, under the law and the related separation of governance from input of financial capital through the configuration of a corporation, sanctioned corporate participants to do somewhat more than connect in a series of business transactions.Keywords: corporate law, entity status, locking in capital, financial capital
Procedia PDF Downloads 5552261 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1162260 Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform
Authors: Sana Almi, Djamel Barkat
Abstract:
The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+.Keywords: solvent extraction, nickel(II), cobalt(II), salicylidene aniline, o-, m-, and p-salicylidene toluidine
Procedia PDF Downloads 4852259 Extraction of Essential Oil From Orange Peels
Authors: Aayush Bhisikar, Neha Rajas, Aditya Bhingare, Samarth Bhandare, Amruta Amrurkar
Abstract:
Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.Keywords: orange peels, extraction, essential oil, distillation
Procedia PDF Downloads 872258 Extraction of Essential Oil from Orange Peels
Authors: Neha Rajas, Aayush Bhisikar, Samarth Bhandare, Aditya Bhingare, Amruta Amrutkar
Abstract:
Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.Keywords: orange peels, extraction, distillation, essential oil
Procedia PDF Downloads 802257 Microwave-Assisted Extraction of Lycopene from Gac Arils (Momordica cochinchinensis (Lour.) Spreng)
Authors: Yardfon Tanongkankit, Kanjana Narkprasom, Nukrob Narkprasom, Khwanruthai Saiupparat, Phatthareeya Siriwat
Abstract:
Gac fruit (Momordica cochinchinensis (Lour.) Spreng) possesses high potential for health food as it contains high lycopene contents. The objective of this study was to optimize the extraction of lycopene from gac arils using the microwave extraction method. Response surface method was used to find the conditions that optimize the extraction of lycopene from gac arils. The parameters of extraction used in this study were extraction time (120-600 seconds), the solvent to sample ratio (10:1, 20:1, 30:1, 40:1 and 50:1 mL/g) and set microwave power (100-800 watts). The results showed that the microwave extraction condition at the extraction time of 360 seconds, the sample ratio of 30:1 mL/g and the microwave power of 450 watts were suggested since it exhibited the highest value of lycopene content of 9.86 mg/gDW. It was also observed that lycopene contents extracted from gac arils by microwave method were higher than that by the conventional method.Keywords: conventional extraction, Gac arils, microwave-assisted extraction, Lycopene
Procedia PDF Downloads 3902256 Solvent extraction of molybdenum (VI) with two organophosphorus reagents TBP and D2EHPA under microwave irradiations
Authors: Ahmed Boucherit, Hussein Khalaf, Eduardo Paredes, José Luis Todolí
Abstract:
Solvent extraction studies of molybdenum (VI) with two organophosphorus reagents namely TBP and D2EHPA have been carried out from aqueous acidic solutions of HCl, H2SO4 and H3PO4 under microwave irradiations. The extraction efficiencies of the investigated extractants in the extraction of molybdenum (Vl) were compared. Extraction yield was found unchanged when microwave power varied in the range 20-100 Watts from H2SO4 or H3PO4 but it decreases in the range 20-60 Watts and increases in the range 60-100 Watts when TBP is used for extraction of molybdenum (VI) from 1 M HCl solutions. Extraction yield of molybdenum (VI) was found higher with TBP for HCl molarities greater than 1 M than with D2EHPA for H3PO4 molarities lower than 1 M. Extraction yield increases with HCl molarities in the range 0.50 - 1.80 M but it decreases with the increase in H2SO4 and H3PO4 molarities in the range of 0.05 - 1 M and 0.50 - 1 M, respectively.Keywords: extraction, molybdenum, microwave, solvent
Procedia PDF Downloads 6422255 Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur
Authors: Roukia Hammoudi, Chabrouk Farid, Dehak Karima, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj
Abstract:
The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity
Procedia PDF Downloads 6032254 Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur
Authors: Roukia Hammoudi, Dehak Karima, Chabrouk Farid, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj
Abstract:
The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity
Procedia PDF Downloads 5952253 Change of Flavor Characteristics of Flavor Oil Made Using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito) According to Extraction Temperature and Extraction Time
Authors: Gyeong-Suk Jo, Soo-Hyun Ji, You-Seok Lee, Jeong-Hwa Kang
Abstract:
To develop an flavor oil using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito), infiltration extraction method was used to add dried mushroom flavor of Sarcodon aspratus to base olive oil. Edible base oil used during infiltration extraction was pressed olive oil, and infiltration extraction was done while varying extraction temperature to 20, 30, 40 and 50(℃) extraction time to 24 hours, 48 hours and 72 hours. Amount of Sarcodon aspratus added to base oil was 20% compared to 100% of base oil. Production yield of Sarcodon aspratus flavor oil decreased with increasing extraction frequency. Aroma intensity was 2195~2447 (A.U./1㎖), and it increased with increasing extraction temperature and extraction time. Chromaticity of Sarcodon aspratus flavor oil was bright pale yellow with pH of 4.5, sugar content of 71~72 (°Brix), and highest average turbidity of 16.74 (Haze %) shown by the 40℃ group. In the aromatic evaluation, increasing extraction temperature and extraction time resulted in increase of cheese aroma, savory sweet aroma and beef jerky aroma, as well as spicy taste comprised of slight bitter taste, savory taste and slight acrid taste, to make aromatic oil with unique flavor.Keywords: Flavor Characteristics, Flavor Oil, Infiltration extraction method, mushroom, Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)
Procedia PDF Downloads 3752252 Determinaton of Processing Parameters of Decaffeinated Black Tea by Using Pilot-Scale Supercritical CO₂ Extraction
Authors: Saziye Ilgaz, Atilla Polat
Abstract:
There is a need for development of new processing techniques to ensure safety and quality of final product while minimizing the adverse impact of extraction solvents on environment and residue levels of these solvents in final product, decaffeinated black tea. In this study pilot scale supercritical carbon dioxide (SCCO₂) extraction was used to produce decaffeinated black tea in place of solvent extraction. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO₂ flow rate (1, 2 ,3 LPM) and co-solvent quantity (0, 2.5, 5 %mol) were selected as extraction parameters. The five factors BoxBehnken experimental design with three center points was performed to generate 46 different processing conditions for caffeine removal from black tea samples. As a result of these 46 experiments caffeine content of black tea samples were reduced from 2.16 % to 0 – 1.81 %. The experiments showed that extraction time, pressure, CO₂ flow rate and co-solvent quantity had great impact on decaffeination yield. Response surface methodology (RSM) was used to optimize the parameters of the supercritical carbon dioxide extraction. Optimum extraction parameters obtained of decaffeinated black tea were as follows: extraction temperature of 62,5 °C, extraction pressure of 375 bar, CO₂ flow rate of 3 LPM, extraction time of 176.5 min and co-solvent quantity of 5 %mol.Keywords: supercritical carbon dioxide, decaffeination, black tea, extraction
Procedia PDF Downloads 3642251 Comparison of Different Extraction Methods for the Determination of Polyphenols
Authors: Senem Suna
Abstract:
Extraction of bioactive compounds from several food/food products comes as an important topic and new trend related with health promoting effects. As a result of the increasing interest in natural foods, different methods are used for the acquisition of these components especially polyphenols. However, special attention has to be paid to the selection of proper techniques or several processing technologies (supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, powdered extracts production) for each kind of food to get maximum benefit as well as the obtainment of phenolic compounds. In order to meet consumer’s demand for healthy food and the management of quality and safety requirements, advanced research and development are needed. In this review, advantages, and disadvantages of different extraction methods, their opportunities to be used in food industry and the effects of polyphenols are mentioned in details. Consequently, with the evaluation of the results of several studies, the selection of the most suitable food specific method was aimed.Keywords: bioactives, extraction, powdered extracts, supercritical fluid extraction
Procedia PDF Downloads 2392250 Solvent Extraction of Rb and Cs from Jarosite Slag Using t-BAMBP
Authors: Zhang Haiyan, Su Zujun, Zhao Fengqi
Abstract:
Lepidolite after extraction of Lithium by sulfate produced many jarosite slag which contains a lot of Rb and Cs.The separation and recovery of Rubidium(Rb) and Cesium(Cs) can make full of use of Lithium mica. XRF analysis showed that the slag mainly including K Rb Cs Al and etc. Fractional solvent extraction tests were carried out; the results show that using20% t-BAMBP plus 80% sulfonated kerosene, the separation of Rb and Cs can be achieved by adjusting the alkalinity. Extraction is the order of Cs Rb, ratio of Cs to Rb and ratio of Rb to K can reach above 1500 and 2500 respectively.Keywords: cesium, jarosite slag, rubidium, solvent extraction, t-BAMBP
Procedia PDF Downloads 5872249 Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform
Abstract:
Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2.Keywords: capric acid, Cobalt(II), copper(II), liquid-liquid extraction
Procedia PDF Downloads 4412248 Urdu Text Extraction Method from Images
Authors: Samabia Tehsin, Sumaira Kausar
Abstract:
Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.Keywords: caption text, content-based image retrieval, document analysis, text extraction
Procedia PDF Downloads 5162247 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 162246 Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils
Authors: Aarti Singh, Anees Ahmad
Abstract:
Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods.Keywords: cymbopogon martini, essential oil, FT-IR, GC-MS, HPTLC, SC-CO2
Procedia PDF Downloads 4622245 Optimization, Yield and Chemical Composition of Essential Oil from Cymbopogon citratus: Comparative Study with Microwave Assisted Extraction and Hydrodistillation
Authors: Irsha Dhotre
Abstract:
Cymbopogon citratus is generally known as Indian Lemongrass and is widely applicable in the cosmetic, pharmaceutical, dairy puddings, and food industries. To enhance the quality of extraction, microwave-oven-aided hydro distillation processes were implemented. The basic parameter which influences the rate of extraction is considered, such as the temperature of extraction, the time required for extraction, and microwave-oven power applied. Locally available CKP 25 Cymbopogon citratus was used for the extraction of essential oil. Optimization of Extractions Parameters and full factorial Box–Behnken design (BBD) evaluated by using Design expert 13 software. The regression model revealed that the optimum parameters required for extractions are a temperature of 35℃, a time of extraction of 130 minutes, and microwave-oven power of 700 W. The extraction efficiency of yield is 4.76%. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis confirmed the significant components present in the extraction of lemongrass oil.Keywords: Box–Behnken design, Cymbopogon citratus, hydro distillation, microwave-oven, response surface methodology
Procedia PDF Downloads 942244 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising
Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri
Abstract:
Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing
Procedia PDF Downloads 5892243 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks
Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia
Abstract:
PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.Keywords: zinc extraction, efficiency, neural networks, operating condition
Procedia PDF Downloads 5452242 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 452241 Synergistic Extraction Study of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform
Authors: F. Adjel, S. Almi, D. Barkat
Abstract:
The synergistic solvent extraction of cobalt (II) from 0.33 mol dm-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm-3 TOPO in chloroform. From an synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.Keywords: solvent extraction, cobalt (II), capric acid, TOPO, synergism
Procedia PDF Downloads 5242240 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 46