Search results for: cohesive zone
1780 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 4871779 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 4741778 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 5131777 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending
Authors: Aamir Mubashar, Ibrahim Fiaz
Abstract:
This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model
Procedia PDF Downloads 1381776 Failure Load Investigations in Adhesively Bonded Single-Strap Joints of Dissimilar Materials Using Cohesive Zone Model
Authors: B. Paygozar, S.A. Dizaji
Abstract:
Adhesive bonding is a highly valued type of fastening mechanical parts in complex structures, where joining some simple components is always needed. This method is of several merits, such as uniform stress distribution, appropriate bonding strength, and fatigue performance, and lightness, thereby outweighing other sorts of bonding methods. This study is to investigate the failure load of adhesive single-strap joints, including adherends of different sizes and materials. This kind of adhesive joint is very practical in different industries, especially when repairing the existing joints or attaching substrates of dissimilar materials. In this research, experimentally validated numerical analyses carried out in a commercial finite element package, ABAQUS, are utilized to extract the failure loads of the joints, based on the cohesive zone model. In addition, the stress analyses of the substrates are performed in order to acquire the effects of lowering the thickness of the substrates on the stress distribution inside them to avoid designs suffering from the necking or failure of the adherends. It was found out that this method of bonding is really feasible in joining dissimilar materials which can be utilized in a variety of applications. Moreover, the stress analyses indicated the minimum thickness for the adherends so as to avoid the failure of them.Keywords: cohesive zone model, dissimilar materials, failure load, single strap joint
Procedia PDF Downloads 1231775 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test
Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou
Abstract:
The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending
Procedia PDF Downloads 1501774 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites
Authors: M. Palizvan, M. T. Abadi, M. H. Sadr
Abstract:
Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE
Procedia PDF Downloads 1671773 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders
Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen
Abstract:
With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming
Procedia PDF Downloads 1511772 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding
Authors: Wenya Shu, Ilinca Stanciulescu
Abstract:
Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding
Procedia PDF Downloads 1291771 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach
Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie
Abstract:
The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.Keywords: ductile failure, cohesive model, GTN model, numerical simulation
Procedia PDF Downloads 1491770 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers
Authors: Qiong Rao, Xiongqi Peng
Abstract:
In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model
Procedia PDF Downloads 1331769 Context and Culture in EFL Learners' and Native Speakers' Discourses
Authors: Emad A. S. Abu-Ayyash
Abstract:
Cohesive devices, the linguistic tools that are usually employed to hold the different parts of the text together, have been the focus of a significant number of discourse analysis studies. These linguistic tools have grabbed the attention of researchers since the inception of the first and most comprehensive model of cohesion in 1976. However, it was noticed that some cohesive devices (e.g., endophoric reference, conjunctions, ellipsis, substitution, and lexical ties) – being thought of as more popular than others (e.g., exophoric reference) – were over-researched. The present paper explores the usage of two cohesive devices that have been evidently almost absent from discourse analysis studies. These cohesive devices are exophoric and homophoric references, the linguistic items that can be interpreted in terms of the physical and cultural contexts of discourse. The significance of the current paper, therefore, stems from the fact that it attempts to fill a gap in the research conducted so far on cohesive devices. This study provides an explanation of the concepts of the cohesive devices that have been employed in a plethora of research on cohesion and elucidates the relevant context-related concepts. The paper also identifies the gap in cohesive devices research. Exophora and homophora, the least visited cohesive devices in previous studies, were qualitatively and quantitatively explored in six opinion articles, four produced by eight postgraduate English as a Foreign Language (EFL) students in a university in the United Arab Emirates and two by professional NS writers in the Independent and the Guardian. The six pieces were about the United Kingdom Independent Party (UKIP) leader’s call to ban the burqa in the UK and were analysed vis-a-vis the employment and function of homophora and exophora. The study found that both EFL students and native speakers employed exophora and homophora considerably in their writing to serve a variety of functions, including building assumptions, supporting main ideas, and involving the readers among others.Keywords: cohesive devices, context, culture, exophoric reference, homophoric reference
Procedia PDF Downloads 1231768 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade
Procedia PDF Downloads 4481767 Institutional Superposition, over Management and Coastal Economic Development: Coastal Areas in China
Authors: Mingbao Chen, Mingli Zhao
Abstract:
The coastal zone is the intersection of land and sea system, and also is the connecting zone of the two economic systems of land and sea. In the world, all countries attach great importance to the coastal zone management and the coastal zone economy. In China, the government has developed a number of related coastal management policies and institutional, such as marine functional zoning, main function zoning, integrated coastal zone management, to ensure the sustainable utilization of the coastal zone and promote the development of coastal economic. However, in practice, the effect is not satisfactory. This paper analyses the coastal areas of coastal zone management on coastal economic growth contribution based on coastal areas economic development data with the 2007-2015 in China, which uses the method of the evaluation index system of coastal zone management institutional efficiency. The results show that the coastal zone management institutional objectives are not clear, and the institutional has high repeatability. At the same time, over management of coastal zone leads to low economic efficiency because the government management boundary is blurred.Keywords: institutional overlap, over management, coastal zone management, coastal zone economy
Procedia PDF Downloads 3921766 Behavior of Laterally Loaded Multi-Helix Helical Piles Under Vertical Loading in Cohesive and Cohesionless Soils
Authors: Mona Fawzy Aldaghma
Abstract:
Helical piles are gaining popularity as a viable deep foundation alternative due to their quick installation and multipurpose use in compression and tension. These piles are commonly used as foundations for constructions such as solar panels, wind turbines and offshore platforms. These structures typically transfer various combinations of loads to their helical-pile foundations, including axial and lateral loads. Further research is needed to determine the effects of loading patterns that may act on helical piles as compounds of axial compression and lateral stresses. Multi helical piles are used to increase the efficiency of these piles. In this study, it investigate the behavior of laterally loaded helical piles with multiple helices when subjected to vertical loading conditions in both cohesive and cohesionless soils. Two models of intermediate shaft rigidity are studied with either two or three helices. Additionally, the vertical loading conditions were altered between successive and simultaneous loading. The cohesionless soil is sand with medium density and the cohesive soil is clay with medium cohesion. The study will carried out with numerical analysis using PLAXIS 3D and will be verified by an experimental tests. The numerical simulations reveal that helical piles exhibit different behavior in cohesive soil compared to cohesionless soil.Keywords: helical piles, multi-helix, numerical modeling, PLAXIS 3D, cohesive soil, cohesionless soil, experimental
Procedia PDF Downloads 361765 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests
Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan
Abstract:
This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain
Procedia PDF Downloads 3161764 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam
Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar
Abstract:
Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.Keywords: FPZ, fracture, FRP, shear
Procedia PDF Downloads 5341763 Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M
Authors: Muhammad Tarmidzi, Reza M. G. Gani, Andri Luthfi
Abstract:
The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82.Keywords: hydrocarbons zone, petrophysic, rock property, sequence stratigraphic
Procedia PDF Downloads 3261762 The Conceptual Exploration of Comfort Zone by Using Content Analysis
Authors: Lilla Szabó Hangya, Szilvia Jambori
Abstract:
The comfort zone is less studied area in the field of psychology. One of the most important definitions is that comfort zone is a psychological state in which things feel familiar to a person with low level of anxiety and stress. But the validity of comfort zone does not confirm till now. The aim of our pilot research is to test which psychological factors could determine how young adults behave during their decision process to stay in one’s comfort zone or to leave it. Every person has a number of comfort zones, so we are not able to measure it directly, only those personality traits which predict if someone leaves his comfort zone easier or harder. In our study at first we wanted to clarify the meaning of comfort zone. 110 young adults (male: 37, female: 73; ages from 18 to 70, average age: 26,6) took part in the study. Beside their demographic datas we asked them what does the comfort zone mean for them. The results showed that the meaning of the comfort zone can be grouped in five dimensions: comfort (49,6 %), leaving it-change (8,1%), ambivalent feelings (10,6%), related to other people (10,6%), pursuit of self-realization (16,8%). Our results demonstrated age related characteristics. For young people at the age of 19 the comfort zone is related to other people, because during adolescents peer relationships become more important. Subjects at the age 20-30 answered that the comfort zone means comfort and stability for them. Their life becomes stable for a while, they are studying or working. But at the age of 25, when they finish university, most of them answered comfort zone means a changing process for them. On the other hand for subjects at the age of 27 the means of the comfort zone is pursuit of self-realization. After that period at the age of 31 when they have families and stable job the stability will also dominant. We saw that the comfort zone has much more meaning besides a pleasant psychological trait. Further we would like to determine which psychological factors relate to comfort zone, and what kind of personality traits could predict leaving or staying in one’s comfort zone. We want to observe the relationship between comfort zone and subjective well-being, life satisfaction self-efficacy or self-esteem.Keywords: comfort zone, development, personality trait, young adults
Procedia PDF Downloads 3401761 Numerical Simulation of Fracturing Behaviour of Pre-Cracked Crystalline Rock Using a Cohesive Grain-Based Distinct Element Model
Authors: Mahdi Saadat, Abbas Taheri
Abstract:
Understanding the cracking response of crystalline rocks at mineralogical scale is of great importance during the design procedure of mining structures. A grain-based distinct element model (GBM) is employed to numerically study the cracking response of Barre granite at micro- and macro-scales. The GBM framework is augmented with a proposed distinct element-based cohesive model to reproduce the micro-cracking response of the inter- and intra-grain contacts. The cohesive GBM framework is implemented in PFC2D distinct element codes. The microstructural properties of Barre granite are imported in PFC2D to generate synthetic specimens. The microproperties of the model is calibrated against the laboratory uniaxial compressive and Brazilian split tensile tests. The calibrated model is then used to simulate the fracturing behaviour of pre-cracked Barre granite with different flaw configurations. The numerical results of the proposed model demonstrate a good agreement with the experimental counterparts. The GBM framework proposed thus appears promising for further investigation of the influence of grain microstructure and mineralogical properties on the cracking behaviour of crystalline rocks.Keywords: discrete element modelling, cohesive grain-based model, crystalline rock, fracturing behavior
Procedia PDF Downloads 1291760 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene
Authors: Yingqian Chen, Sergei Manzhos
Abstract:
Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes
Procedia PDF Downloads 6401759 Communication Development for Development Communication: Prospects and Challenges of New Media Technologies in South East Zone, Nigeria
Authors: O. I. Ekwueme
Abstract:
New media technologies are noted for their immense contributions in various sectors of the economy which are believed to have resulted in the development of European countries. There is an assumption that we cannot have development communication without communication development, but we are not sure if new media technologies contribute to development in the South-East zone, Nigeria. The study employed mixed method and discovered that new media technologies have a very minimal relationship to development in the South-East zone, Nigeria. It was discovered that the media report on development news is basically informative instead of interactive. The South-East zone is scarcely covered unlike other zones. It argued that the communication technologies introduced in Nigeria was as a result of their struggle for independence. It was recommended that media organisations in the South-East zone should give adequate coverage to the zone, and be more interactive.Keywords: communication, development, new media, technologies
Procedia PDF Downloads 3391758 Solution to Riemann Hypothesis Critical Strip Zone Using Non-Linear Complex Variable Functions
Authors: Manojkumar Sabanayagam
Abstract:
The Riemann hypothesis is an unsolved millennium problem and the search for a solution to the Riemann hypothesis is to study the pattern of prime number distribution. The scope of this paper is to identify the solution for the critical strip and the critical line axis, which has the non-trivial zero solutions using complex plane functions. The Riemann graphical plot is constructed using a linear complex variable function (X+iY) and is applicable only when X>1. But the investigation shows that complex variable behavior has two zones. The first zone is the transformation zone, where the definition of the complex plane should be a non-linear variable which is the critical strip zone in the graph (X=0 to 1). The second zone is the transformed zone (X>1) defined using linear variables conventionally. This paper deals with the Non-linear function in the transformation zone derived using cosine and sinusoidal time lag w.r.t imaginary number ‘i’. The alternate complex variable (Cosθ+i Sinθ) is used to understand the variables in the critical strip zone. It is concluded that the non-trivial zeros present in the Real part 0.5 are because the linear function is not the correct approach in the critical strip. This paper provides the solution to Reimann's hypothesis.Keywords: Reimann hypothesis, critical strip, complex plane, transformation zone
Procedia PDF Downloads 2081757 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads
Authors: Kavitha A.S., L.Govindaraju
Abstract:
Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.Keywords: geogrid, geotextile, reinforced earth, sandwich technique
Procedia PDF Downloads 2871756 Static Study of Piezoelectric Bimorph Beams with Delamination Zone
Authors: Zemirline Adel, Ouali Mohammed, Mahieddine Ali
Abstract:
The FOSDT (First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.Keywords: static, piezoelectricity, beam, delamination
Procedia PDF Downloads 4181755 Biogenic-Sedimentary Structures of the Ordovician-Khabour Formation from the Northern Thrust Zone, Kurdistan, Iraq
Authors: Waleed Sulaiman Shingaly
Abstract:
The Ordivician-Khabour Formation from the Northern Thrust Zone of Iraqi-Kurdistan comprises between 500 and 800 m of alternating predominantly greenish-grey sandstones, siltstones and shales. The succession has revealed an abundant ichnofossils characterized by 11 ichnogenus, namely: Helminthopsis, Gordia, Cruziana, Rusophycus, Monomorphichnus, Rhizocorallium, Thalassinoide, Planolite, Paleophycus, Deplocraterion and Skolithose. Ethologically these ichnogenera display dwelling and feeding activities of the infaunal organisms. This association of ichnofossils contains elements of the Skolithose and Cruziana ichnofacies. The presence of Skolithos ichnofacies indicates sandy shifting substrate and high energy conditions in foreshore zone while the Cruziana ichnofacies indicate unconsolidated, poorly sorted soft substrate and low energy condition in the shore face/offshore zone. These ichnogenera indicate shoreface-offshore zone of shallow-marine environment for the deposition of the rocks of the Khabour Formation.Keywords: Ichnofossils, shoreface-offshore zone, Khabour Formation, Iraq
Procedia PDF Downloads 5241754 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture
Authors: Juan Huang, Hugo Ninanya
Abstract:
Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis
Procedia PDF Downloads 2051753 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing
Authors: John Eric C. Bargas, Maria Cecilia M. Marcos
Abstract:
One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing
Procedia PDF Downloads 471752 Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone
Authors: Niranjan Mukherjee, Burga Braun, Ulrich Szewzyk
Abstract:
Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals.Keywords: iopromide, hyporheic zone, recalcitrant pharmaceutical, redox gradients
Procedia PDF Downloads 1281751 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods
Authors: H. J. Wattimanela, U. S. Passaribu, A. N. T. Puspito, S. W. Indratno
Abstract:
Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.Keywords: molluca collision zone, partition regions, conventional statistical methods, earthquakes, classifications, disaster management
Procedia PDF Downloads 498