Search results for: algebraic method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19024

Search results for: algebraic method

19024 A Study of Algebraic Structure Involving Banach Space through Q-Analogue

Authors: Abdul Hakim Khan

Abstract:

The aim of the present paper is to study the Banach Space and Combinatorial Algebraic Structure of R. It is further aimed to study algebraic structure of set of all q-extension of classical formula and function for 0 < q < 1.

Keywords: integral functions, q-extensions, q numbers of metric space, algebraic structure of r and banach space

Procedia PDF Downloads 580
19023 On Algebraic Structure of Improved Gauss-Seide Iteration

Authors: O. M. Bamigbola, A. A. Ibrahim

Abstract:

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence

Procedia PDF Downloads 464
19022 Proposal of Design Method in the Semi-Acausal System Model

Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented

Procedia PDF Downloads 485
19021 Serious Digital Video Game for Solving Algebraic Equations

Authors: Liliana O. Martínez, Juan E González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

A serious game category mobile application called Math Dominoes is presented. The main objective of this applications is to strengthen the teaching-learning process of solving algebraic equations and is based on the board game "Double 6" dominoes. Math Dominoes allows the practice of solving first, second-, and third-degree algebraic equations. This application is aimed to students who seek to strengthen their skills in solving algebraic equations in a dynamic, interactive, and fun way, to reduce the risk of failure in subsequent courses that require mastery of this algebraic tool.

Keywords: algebra, equations, dominoes, serious games

Procedia PDF Downloads 130
19020 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction

Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung

Abstract:

In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.

Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality

Procedia PDF Downloads 474
19019 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems

Authors: Malika Elkyal

Abstract:

We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations

Procedia PDF Downloads 558
19018 Exploring the Intersection of Categorification and Computation in Algebraic Combinatorial Structures

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study explores the intersection of categorification and computation within algebraic combinatorial structures, aiming to deepen the understanding of how categorical frameworks can enhance computational methods. We investigate the role of higher-dimensional categories in organizing and analyzing combinatorial data, revealing how these structures can lead to new computational techniques for solving complex problems in algebraic combinatory. By examining examples such as species, posets, and operads, we illustrate the transformative potential of categorification in generating new algorithms and optimizing existing ones. Our findings suggest that integrating categorical insights with computational approaches not only enriches the theoretical landscape but also provides practical tools for tackling intricate combinatorial challenges, ultimately paving the way for future research in both fields.

Keywords: categorification, computation, algebraic structures, combinatorics

Procedia PDF Downloads 14
19017 Algebraic Characterization of Sheaves over Boolean Spaces

Authors: U. M. Swamy

Abstract:

A compact Hausdorff and totally disconnected topological space are known as Boolean space in view of the stone duality between Boolean algebras and such topological spaces. A sheaf over X is a triple (S, p, X) where S and X are topological spaces and p is a local homeomorphism of S onto X (that is, for each element s in S, there exist open sets U and G containing s and p(s) in S and X respectively such that the restriction of p to U is a homeomorphism of U onto G). Here we mainly concern on sheaves over Boolean spaces. From a given sheaf over a Boolean space, we obtain an algebraic structure in such a way that there is a one-to-one correspondence between these algebraic structures and sheaves over Boolean spaces.

Keywords: Boolean algebra, Boolean space, sheaf, stone duality

Procedia PDF Downloads 349
19016 Math Rally Proposal for the Teaching-Learning of Algebra

Authors: Liliana O. Martínez, Juan E. González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

In this work, the use of a collection of mathematical challenges and puzzles aimed at students who are starting in algebra is proposed. The selected challenges and puzzles are intended to arouse students' interest in this area of mathematics, in addition to facilitating the teaching-learning process through challenges such as riddles, crossword puzzles, and board games, all in everyday situations that allow them to build themselves the learning. For this, it is proposed to carry out a "Math Rally: algebra" divided into four sections: mathematical reasoning, a hierarchy of operations, fractions, and algebraic equations.

Keywords: algebra, algebraic challenge, algebraic puzzle, math rally

Procedia PDF Downloads 171
19015 Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method

Authors: Marek Dlapa

Abstract:

The algebraic approach is applied to the control of the HiMAT (Highly Maneuverable Aircraft Technology). The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal MIMO (multi-input multi-output) system into two identical SISO (single-input single-output) plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design, and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.

Keywords: algebraic approach, evolutionary computation, genetic algorithms, HiMAT, robust control, structured singular value

Procedia PDF Downloads 140
19014 Trajectory Tracking Controller Based on Normalized Right Coprime Factorization Technique for the Ball and Plate System

Authors: Martins Olatunbosun Babatunde, Muhammed Bashir Muazu, Emmanuel Adewale Adedokun

Abstract:

This paper presents the development of a double-loop trajectory-tracking controller for the ball and plate system (BPS) using the Normalized Right Coprime Factorization (NRCF) scheme.The Linear Algebraic (LA) method is used to design the inner loop required to stabilize the ball, while H-infinity NRCF method, that involved the lead-lag compensator design approach, is used to develop the outer loop that controls the plate. Simulation results show that the plate was stabilized at 0.2989 seconds and the ball was able to settle after 0.9646 seconds, with a trajectory tracking error of 0.0036. This shows that the controller has good adaptability and robustness.

Keywords: ball and plate system, normalized right coprime factorization, linear algebraic method, compensator, controller, tracking.

Procedia PDF Downloads 141
19013 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 217
19012 Parallel Multisplitting Methods for DAE’s

Authors: Ahmed Machmoum, Malika El Kyal

Abstract:

We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: computer, multi-splitting methods, asynchronous mode, differential algebraic systems

Procedia PDF Downloads 549
19011 Identification of Configuration Space Singularities with Local Real Algebraic Geometry

Authors: Marc Diesse, Hochschule Heilbronn

Abstract:

We address the question of identifying the configuration space singularities of linkages, i.e., points where the configuration space is not locally a submanifold of Euclidean space. Because the configuration space cannot be smoothly parameterized at such points, these singularity types have a significantly negative impact on the kinematics of the linkage. It is known that Jacobian methods do not provide sufficient conditions for the existence of CS-singularities. Herein, we present several additional algebraic criteria that provide the sufficient conditions. Further, we use those criteria to analyze certain classes of planar linkages. These examples will also show how the presented criteria can be checked using algorithmic methods.

Keywords: linkages, configuration space-singularities, real algebraic geometry, analytic geometry

Procedia PDF Downloads 148
19010 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen

Abstract:

A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 479
19009 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 311
19008 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing

Authors: Nileshkumar Vishnav, Aditya Tatu

Abstract:

A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.

Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing

Procedia PDF Downloads 352
19007 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication

Authors: Krish Jhurani

Abstract:

The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.

Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties

Procedia PDF Downloads 123
19006 Constructing White-Box Implementations Based on Threshold Shares and Composite Fields

Authors: Tingting Lin, Manfred von Willich, Dafu Lou, Phil Eisen

Abstract:

A white-box implementation of a cryptographic algorithm is a software implementation intended to resist extraction of the secret key by an adversary. To date, most of the white-box techniques are used to protect block cipher implementations. However, a large proportion of the white-box implementations are proven to be vulnerable to affine equivalence attacks and other algebraic attacks, as well as differential computation analysis (DCA). In this paper, we identify a class of block ciphers for which we propose a method of constructing white-box implementations. Our method is based on threshold implementations and operations in composite fields. The resulting implementations consist of lookup tables and few exclusive OR operations. All intermediate values (inputs and outputs of the lookup tables) are masked. The threshold implementation makes the distribution of the masked values uniform and independent of the original inputs, and the operations in composite fields reduce the size of the lookup tables. The white-box implementations can provide resistance against algebraic attacks and DCA-like attacks.

Keywords: white-box, block cipher, composite field, threshold implementation

Procedia PDF Downloads 169
19005 Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Authors: N. Senu, I. A. Kasim, F. Ismail, N. Bachok

Abstract:

In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.

Keywords: dissipation, oscillatory solutions, phase-lag, Runge-Kutta methods

Procedia PDF Downloads 411
19004 A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows

Authors: Yanni Chang, Dezhi Dai, Albert Y. Tong

Abstract:

Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones.

Keywords: interpolation scheme, multiphase flows, overset meshes, PLIC-VOF method

Procedia PDF Downloads 176
19003 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 474
19002 On the Zeros of the Degree Polynomial of a Graph

Authors: S. R. Nayaka, Putta Swamy

Abstract:

Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained.

Keywords: degree polynomial, regular graph, minimum and maximum degree, graph operations

Procedia PDF Downloads 249
19001 Going beyond Elementary Algebraic Identities: The Expectation of a Gifted Child, an Indian Scenario

Authors: S. R. Santhanam

Abstract:

A gifted child is one who gives evidence of creativity, good memory, rapid learning. In mathematics, a teacher often comes across some gifted children and they exhibit the following characteristics: unusual alertness, enjoying solving problems, getting bored on repetitions, self-taught, going beyond what teacher taught, ask probing questions, connecting unconnected concepts, vivid imagination, readiness for research work, perseverance of a topic. There are two main areas of research carried out on them: 1)identifying gifted children, 2) interacting and channelizing them. A lack of appropriate recognition will lead the gifted child demotivated. One of the main findings is if proper attention and nourishment are not given then it leads a gifted child to become depressed, underachieving, fail to reach their full potential and sometimes develop negative attitude towards school and study. After identifying them, a mathematics teacher has to develop them into a fall fledged achiever. The responsibility of the teacher is enormous. The teacher has to be resourceful and patient. But interacting with them one finds a lot of surprises and awesomeness. The elementary algebraic identities like (a+b)(a-b)=a²-b², expansion of like (a+b)²(a-b)² and others are taught to students, of age group 13-15 in India. An average child will be satisfied with a single proof and immediate application of these identities. But a gifted child expects more from the teacher and at one stage after a little training will surpass the teacher also. In this short paper, the author shares his experience regarding teaching algebraic identities to gifted children. The following problem was given to a set of 10 gifted children of the specified age group: If a natural number ‘n’ to expressed as the sum of the two squares, will 2n also be expressed as the sum of two squares? An investigation has been done on what multiples of n satisfying the criterion. The attempts of the gifted children were consolidated and conclusion was drawn. A second problem was given to them as: can two natural numbers be found such that the difference of their square is 3? After a successful solution, more situations were analysed. As a third question, the finding of the sign of an algebraic expression in three variables was analysed. As an example: if a,b,c are real and unequal what will be sign of a²+4b²+9c²-4ab-12bc-6ca? Apart from an expression as a perfect square what other methods can be employed to prove an algebraic expression as positive negative or non negative has been analysed. Expressions like 4x²+2y²+13y²-2xy-4yz-6zx were given, and the children were asked to find the sign of the expression for all real values of x,y and z. In all investigations, only basic algebraic identities were used. As a next probe, a divisibility problem was initiated. When a,b,c are natural numbers such that a+b+c is at least 6, and if a+b+c is divisible by 6 then will 6 divide a³+b³+c³. The gifted children solved it in two different ways.

Keywords: algebraic identities, gifted children, Indian scenario, research

Procedia PDF Downloads 180
19000 Bound State Problems and Functional Differential Geometry

Authors: S. Srednyak

Abstract:

We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.

Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos

Procedia PDF Downloads 70
18999 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows

Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar

Abstract:

In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.

Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF

Procedia PDF Downloads 358
18998 Incomplete Existing Algebra to Support Mathematical Computations

Authors: Ranjit Biswas

Abstract:

The existing subject Algebra is incomplete to support mathematical computations being done by scientists of all areas: Mathematics, Physics, Statistics, Chemistry, Space Science, Cosmology etc. even starting from the era of great Einstein. A huge hidden gap in the subject ‘Algebra’ is unearthed. All the scientists today, including mathematicians, physicists, chemists, statisticians, cosmologists, space scientists, and economists, even starting from the great Einstein, are lucky that they got results without facing any contradictions or without facing computational errors. Most surprising is that the results of all scientists, including Nobel Prize winners, were proved by them by doing experiments too. But in this paper, it is rigorously justified that they all are lucky. An algebraist can define an infinite number of new algebraic structures. The objective of the work in this paper is not just for the sake of defining a distinct algebraic structure, but to recognize and identify a major gap of the subject ‘Algebra’ lying hidden so far in the existing vast literature of it. The objective of this work is to fix the unearthed gap. Consequently, a different algebraic structure called ‘Region’ has been introduced, and its properties are studied.

Keywords: region, ROR, RORR, region algebra

Procedia PDF Downloads 52
18997 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts

Authors: Elham Kiyani

Abstract:

In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.

Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization

Procedia PDF Downloads 216
18996 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 228
18995 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation

Authors: Kamel Al-Khaled

Abstract:

A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.

Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point

Procedia PDF Downloads 471