Search results for: Matthias Leschok
65 Printing Thermal Performance: An Experimental Exploration of 3DP Polymers for Facade Applications
Authors: Valeria Piccioni, Matthias Leschok, Ina Cheibas, Illias Hischier, Benjamin Dillenburger, Arno Schlueter, Matthias Kohler, Fabio Gramazio
Abstract:
The decarbonisation of the building sector requires the development of building components that provide energy efficiency while producing minimal environmental impact. Recent advancements in large-scale 3D printing have shown that it is possible to fabricate components with embedded performances that can be tuned for their specific application. We investigate the potential of polymer 3D printing for the fabrication of translucent facade components. In this study, we explore the effect of geometry on thermal insulation of printed cavity structures following a Hot Box test method. The experimental results are used to calibrate a finite-element simulation model which can support the informed design of 3D printed insulation structures. We show that it is possible to fabricate components providing thermal insulation ranging from 1.7 to 0.95 W/m2K only by changing the internal cavity distribution and size. Moreover, we identify design guidelines that can be used to fabricate components for different climatic conditions and thermal insulation requirements. The research conducted provides the first insights into the thermal behaviour of polymer 3DP facades on a large scale. These can be used as design guidelines for further research toward performant and low-embodied energy 3D printed facade components.Keywords: 3D printing, thermal performance, polymers, facade components, hot-box method
Procedia PDF Downloads 18164 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 24363 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 23062 Evaluation of Merger Premium and Firm Performance in Europe
Authors: Matthias Nnadi
Abstract:
This paper investigates the relationship between premiums and returns in the short and long terms in European merger and acquisition (M&A) deals. The study employs Calendar Time Portfolio (CTP) model and find strong evidence that in the long run, premiums have a positive impact on performance, and we also establish evidence of a significant difference between the abnormal returns of the high premium paying portfolio and the low premium paying ones. Even in cases where all sub-portfolios show negative abnormal returns, the high premium category still outperforms the low premium category. Our findings have implications for companies engaging in acquisitions.Keywords: mergers, premium, performance, returns, acquisitions
Procedia PDF Downloads 27861 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21360 Community Development and Preservation of Heritage in Igbo Area of Nigeria
Authors: Elochukwu A. Nwankwo, Matthias U. Agboeze
Abstract:
Many heritage sites abound in the shores of Nigeria with enormous tourism potentials. Heritage sites do not only depict the cultural and historical transmutation of people but also functions in the image design and promotion of a locality. This reveals the unique role of heritage sites to structural development of an area. Heritage sites have of recent been a victim of degradation and social abuse arising from seasonal ignorance; hence minimizing its potentials to the socio-economic development of an area. This paper is emphasizing on the adoption of community development approaches in heritage preservation in Igbo area. Its modalities, applications, challenges and prospect were discussed. Such understanding will serve as a catalyst in aiding general restoration and preservation of heritage sites in Nigeria and other African states.Keywords: heritage resources, community development, preservation, sustainable development, approaches
Procedia PDF Downloads 31059 The Effects of Self-Graphing on the Reading Fluency of an Elementary Student with Learning Disabilities
Authors: Matthias Grünke
Abstract:
In this single-case study, we evaluated the effects of a self-graphing intervention to help students improve their reading fluency. Our participant was a 10-year-old girl with a suspected learning disability in reading. We applied an ABAB reversal design to test the efficacy of our approach. The dependent measure was the number of correctly read words from a children’s book within five minutes. Our participant recorded her daily performance using a simple line diagram. Results indicate that her reading rate improved simultaneously with the intervention and dropped as soon as the treatment was suspended. The findings give reasons for optimism that our simple strategy can be a very effective tool in supporting students with learning disabilities to boost their reading fluency.Keywords: single-case study, learning disabilities, elementary education, reading problems, reading fluency
Procedia PDF Downloads 11158 Resource Efficiency within Current Production
Authors: Sarah Majid Ansari, Serjosha Wulf, Matthias Goerke
Abstract:
In times of global warming and the increasing shortage of resources, sustainable production is becoming more and more inevitable. Companies cannot only heighten their competitiveness but also contribute positively to environmental protection through efficient energy and resource consumption. Regarding this, technical solutions are often preferred during production, although organizational and process-related approaches also offer great potential. This project focuses on reducing resource usage, with a special emphasis on the human factor. It is the aspiration to develop a methodology that systematically implements and embeds suitable and individual measures and methods regarding resource efficiency throughout the entire production. The measures and methods established help employees handle resources and energy more sensitively. With this in mind, this paper also deals with the difficulties that can occur during the sensitization of employees and the implementation of these measures and methods. In addition, recommendations are given on how to avoid such difficulties.Keywords: implementation, human factors, production plants, resource efficiency
Procedia PDF Downloads 48157 Scaling-Down an Agricultural Waste Biogas Plant Fermenter
Authors: Matheus Pessoa, Matthias Kraume
Abstract:
Scale-Down rules in process engineering help us to improve and develop Industrial scale parameters into lab scale. Several scale-down rules available in the literature like Impeller Power Number, Agitation device Power Input, Substrate Tip Speed, Reynolds Number and Cavern Development were investigated in order to stipulate the rotational speed to operate an 11 L working volume lab-scale bioreactor within industrial process parameters. Herein, xanthan gum was used as a fluid with a representative viscosity of a hypothetical biogas plant, with H/D = 1 and central agitation, fermentation broth using sewage sludge and sugar beet pulp as substrate. The results showed that the cavern development strategy was the best method for establishing a rotational speed for the bioreactor operation, while the other rules presented values out of reality for this article proposes.Keywords: anaerobic digestion, cavern development, scale down rules, xanthan gum
Procedia PDF Downloads 49356 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 15155 A Qualitative Study About a Former Professional Baseball Player with Dyslexia
Authors: Matthias Grunke
Abstract:
In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.Keywords: baseball, inclusion, learning disabilities, resilience
Procedia PDF Downloads 9654 Financial Reporting Quality and International Financial Reporting
Authors: Matthias Nnadi
Abstract:
Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong
Procedia PDF Downloads 46453 Representativity Based Wasserstein Active Regression
Authors: Benjamin Bobbia, Matthias Picard
Abstract:
In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression
Procedia PDF Downloads 8052 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 13951 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: dexel, process stability, material removal, milling
Procedia PDF Downloads 52550 Digital Material Characterization Using the Quantum Fourier Transform
Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel
Abstract:
The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises
Procedia PDF Downloads 7849 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients
Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund
Abstract:
This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients
Procedia PDF Downloads 15548 Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval
Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje
Abstract:
Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.Keywords: indexing, retrieval, multimedia, graph algorithm, graph code
Procedia PDF Downloads 16147 Evaluation of the Integration of a Direct Reduction Process into an Existing Steel Mill
Authors: Nils Mueller, Gregor Herz, Erik Reichelt, Matthias Jahn
Abstract:
In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO₂ emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO₂ emissions while still being able to further utilize existing blast furnaces, the possibility of including a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing pig iron. By varying boundary conditions of the DRP while recording the CO₂ emissions of the two process steps, the overall potential for the reduction of CO₂ emissions was estimated. Within the simulated range, a maximum reduction of CO₂ emissions of 23.5% relative to typical emissions of a blast furnace could be determined.Keywords: blast furnace, CO₂ mitigation, DRI, hydrogen
Procedia PDF Downloads 28446 Flame Retardancy of Organophosphorus Compound on Cellulose - an Eco Friendly Concern
Authors: M. A. Hannan, N. Matthias Neisius
Abstract:
Organophosphorus compound diethyloxymethyl-9-oxa-10-phosphaphenanthrene-10-oxide (DOPAC) was applied on cotton cellulose to impart eco-friendly flame retardant property to it. Here acetal linkage was introduced rather than conventionally used ester linkage to rescue from the undurability problem of flame retardant compound. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used to form acetal linkage between the base material and flame retardant compound. Inspiring limiting oxygen index (LOI) value of 22.4 was found after exclusive washing treatment. A good outcome of total heat of combustion (THC) 6.05 KJ/g was found possible during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. Low temperature dehydration with sufficient amount of char residue (14.89%) was experienced in case of treated sample. In addition, the temperature of peak heat release rate (TPHRR) 343.061°C supported the expected low temperature pyrolysis in condensed phase mechanism. With the consequence of pyrolysis effects, thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples.Keywords: acetal linkage, char residue, cotton cellulose, flame retardant, loi, low temperature pyrolysis, organophosphorus, THC, THRR
Procedia PDF Downloads 30345 Use of Life Cycle Data for State-Oriented Maintenance
Authors: Maximilian Winkens, Matthias Goerke
Abstract:
The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention
Procedia PDF Downloads 49544 Highly Selective Conversion of CO2 to CO on Cu Nanoparticles
Authors: Rauf Razzaq, Kaiwu Dong, Muhammad Sharif, Ralf Jackstell, Matthias Beller
Abstract:
Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry.Keywords: CO2 reduction, methanol, slurry reactor, synthesis gas
Procedia PDF Downloads 32743 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making
Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty
Abstract:
Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality
Procedia PDF Downloads 8242 Data Driven Infrastructure Planning for Offshore Wind farms
Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree
Abstract:
The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data
Procedia PDF Downloads 8641 The Discovery and Application of Perspective Representation in Modern Italy
Authors: Matthias Stange
Abstract:
In the early modern period, a different image of man began to prevail in Europe. The focus was on the self-determined human being and his abilities. At first, these developments could be seen in Italian painting and architecture, which again oriented itself to the concepts and forms of antiquity. For example, through the discovery of perspective representation by Brunelleschi or later the orthogonal projection by Alberti, after the ancient knowledge of optics had been forgotten in the Middle Ages. The understanding of reality in the Middle Ages was not focused on the sensually perceptible world but was determined by ecclesiastical dogmas. The empirical part of this study examines the rediscovery and development of perspective. With the paradigm of antiquity, the figure of the architect was also recognised again - the cultural man trained theoretically and practically in numerous subjects, as Vitruvius describes him. In this context, the role of the architect, the influence on the painting of the Quattrocento as well as the influence on architectural representation in the Baroque period are examined. Baroque is commonly associated with the idea of illusionistic appearance as opposed to the tangible reality presented in the Renaissance. The study has shown that the central perspective projection developed by Filippo Brunelleschi enabled another understanding of seeing and the dissemination of painted images. Brunelleschi's development made it possible to understand the sight of nature as a reflection of what is presented to the viewer's eye. Alberti later shortened Brunelleschi's central perspective representation for practical use in painting. In early modern Italian architecture and painting, these developments apparently supported each other. The pictorial representation of architecture initially served the development of an art form before it became established in building practice itself.Keywords: Alberti, Brunelleschi, central perspective projection, orthogonal projection, quattrocento, baroque
Procedia PDF Downloads 8540 STAT6 Mediates Local and Systemic Fibrosis and Type Ii Immune Response via Macrophage Polarization during Acute and Chronic Pancreatitis in Murine Model
Authors: Hager Elsheikh, Matthias Sendler, Juliana Glaubnitz
Abstract:
In pancreatitis, an inflammatory reaction occurs in the pancreatic secretory cells due to premature activation of proteases, leading to pancreatic self-digestion and necrotic cell death of acinar cells. Acute pancreatitis in patients is characterized by a severe immune reaction that could lead to serious complications, such as organ failure or septic shock, if left untreated. Chronic pancreatitis is a recurrence of episodes of acute pancreatitis resulting in a fibro-inflammatory immune response, in which the type 2 immune response is primarily driven by AAMs in the pancreas. One of the most important signaling pathways for M2 macrophage activation is the IL-4/STAT6 pathway. Pancreatic fibrosis is induced by the hyperactivation of pancreatic stellate cells by dysregulation in the inflammatory response, leading to further damage, autodigestion and possibly necrosis of pancreatic acinar cells. The aim of this research is to investigate the effect of STAT6 knockout in disease severity and development of fibrosis wound healing in the presence of different macrophage populations, regulated by the type 2 immune response, after inducing chronic and/or acute pancreatitis in mice models via cerulean injection. We further investigate the influence of the JAK/STAT6 signaling pathway on the balance of fibrosis and regeneration in STAT6 deficient and wild-type mice. The characterization of resident and recruited macrophages will provide insight into the influence of the JAK/STAT6 signaling pathway on infiltrating cells and, ultimately, tissue fibrosis and disease severity.Keywords: acute and chronic pancreatitis, tissue regeneration, macrophage polarization, Gastroenterology
Procedia PDF Downloads 6839 Architectural Visualization: From Ancient Civilizations to the Roman Empire
Authors: Matthias Stange
Abstract:
Architectural visualization has been practiced for as long as there have been buildings. Visualization (lat.: visibilis "visible") generally refers to bringing abstract data and relationships into a graphically, visually comprehensible form. Particularly, visualization refers to the process of translating relationships that are difficult to formulate linguistically or logically into visual media (e.g., drawings or models) to make them comprehensible. Building owners have always been interested in knowing how their building will look before it is built. In the empirical part of this study, the roots of architectural visualization are examined, starting from the ancient civilizations to the end of the Roman Empire. Extensive literature research on architectural theory and architectural history forms the basis for this analysis. The focus of the analysis is basic research from the emergence of the first two-dimensional drawings in the Neolithic period to the triggers of significant further developments of architectural representation, as well as their importance for subsequent methods and the transmission of knowledge over the following epochs. The analysis focuses on the development of analog methods of representation from the first Neolithic house floor plans to the Greek detailed stone models and paper drawings in the Roman Empire. In particular, the question of socio-cultural, socio-political, and economic changes as possible triggers for the development of representational media and methods will be analyzed. The study has shown that the development of visual building representation has been driven by scientific, technological, and social developments since the emergence of the first civilizations more than 6000 years ago first by the change in human’s subsistence strategy, from food appropriation by hunting and gathering to food production by agriculture and livestock, and the sedentary lifestyle required for this.Keywords: ancient Greece, ancient orient, Roman Empire, architectural visualization
Procedia PDF Downloads 11638 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector
Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner
Abstract:
Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics
Procedia PDF Downloads 46137 Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design
Authors: Jan Dahlhaus, Alejandro Cardenas Miranda, Frederik Scholer, Maximilian Leonhardt, Matthias Moullion, Frank Beutenmuller, Julia Eckhardt, Josef Wasner, Frank Nittel, Sebastian Stoll, Devin Atukalp, Daniel Folgmann, Tobias Mayer, Obrad Dordevic, Paul Riley, Jean-Marc Le Peuvedic
Abstract:
Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened.Keywords: electric aircraft, battery, Li-ion, multi-level-inverter, Novec
Procedia PDF Downloads 16636 Disrupted or Discounted Cash Flow: Impact of Digitisation on Business Valuation
Authors: Matthias Haerri, Tobias Huettche, Clemens Kustner
Abstract:
This article discusses the impact of digitization on business valuation. In order to become and remain ‘digital’, investments are necessary whose return on investment (ROI) often remains vague. This uncertainty is contradictory for a valuation, that rely on predictable cash flows, fixed capital structures and the steady state. However digitisation does not make a company valuation impossible, but traditional approaches must be reconsidered. The authors identify four areas that are to be changing: (1) Tools instead of intuition - In the future, company valuation will neither be art nor science, but craft. This does not require intuition, but experience and good tools. Digital evaluation tools beyond Excel will therefore gain in importance. (2) Real-time instead of deadline - At present, company valuations are always carried out on a case-by-case basis and on a specific key date. This will change with the digitalization and the introduction of web-based valuation tools. Company valuations can thus not only be carried out faster and more efficiently, but can also be offered more frequently. Instead of calculating the value for a previous key date, current and real-time valuations can be carried out. (3) Predictive planning instead of analysis of the past - Past data will also be needed in the future, but its use will not be limited to monovalent time series or key figure analyses. With pictures of ‘black swans’ and the ‘turkey illusion’ it was made clear to us that we build forecasts on too few data points of the past and underestimate the power of chance. Predictive planning can help here. (4) Convergence instead of residual value - Digital transformation shortens the lifespan of viable business models. If companies want to live forever, they have to change forever. For the company valuation, this means that the business model valid on the valuation date only has a limited service life.Keywords: business valuation, corporate finance, digitisation, disruption
Procedia PDF Downloads 133