Search results for: MR Damper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 117

Search results for: MR Damper

117 Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension

Authors: S. Kopylov, C. Z. Bo

Abstract:

This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined.

Keywords: electromagnetic damper, oscillations with two degrees of freedom, regeneration systems, tuned mass damper

Procedia PDF Downloads 207
116 The Effect of Damper Attachment on Tennis Racket Vibration: A Simulation Study

Authors: Kuangyou B. Cheng

Abstract:

Tennis is among the most popular sports worldwide. During ball-racket impact, substantial vibration transmitted to the hand/arm may be the cause of “tennis elbow”. Although it is common for athletes to attach a “vibration damper” to the spring-bed, the effect remains unclear. To avoid subjective factors and errors in data recording, the effect of damper attachment on racket handle end vibration was investigated with computer simulation. The tennis racket was modeled as a beam with free-free ends (similar to loosely holding the racket). Finite difference method with 40 segments was used to simulate ball-racket impact response. The effect of attaching a damper was modeled as having a segment with increased mass. It was found that the damper has the largest effect when installed at the spring-bed center. However, this is not a practical location due to interference with ball-racket impact. Vibration amplitude changed very slightly when the damper was near the top or bottom of the spring-bed. The damper works only slightly better at the bottom than at the top of the spring-bed. In addition, heavier dampers work better than lighter ones. These simulation results were comparable with experimental recordings in which the selection of damper locations was restricted by ball impact locations. It was concluded that mathematical model simulations were able to objectively investigate the effect of damper attachment on racket vibration. In addition, with very slight difference in grip end vibration amplitude when the damper was attached at the top or bottom of the spring-bed, whether the effect can really be felt by athletes is questionable.

Keywords: finite difference, impact, modeling, vibration amplitude

Procedia PDF Downloads 262
115 Dry Friction Occurring in the Suspensions for Passive and Switchable Damper Systems and Its Effect on Ride Comfort

Authors: Aref M. A. Soliman, Mahmoud A. Hassan

Abstract:

In all vehicle suspension, there is a dry friction. One of the various active suspensions, which have been shown to have considerable practical potential, is a switchable damper suspension system. In this paper, vehicle ride comfort for the passive and switchable damper suspension systems as affected by the value of frictional force generated in springs is discussed. A mathematical model of a quarter vehicle model for two setting switchable damper suspension system with dry friction force is developed to evaluate vehicle ride comfort in terms of suspension performance criteria. The vehicle itself is treated as a rigid body undergoing vertical motions. Comparisons between passive and switchable damper suspensions systems with dry friction force in terms of ride performance are also discussed. The results showed that the ride comfort for the passive and switchable damper suspension systems was deteriorated due to dry friction occurring in the suspensions. The two setting switchable damper with and without dry friction force gives better ride improvements compared with the passive suspension system. Also, the obtained results show an optimum value of damping ratio of the passive suspension system.

Keywords: ride comfort, dry friction, switchable damper, passive suspension

Procedia PDF Downloads 372
114 Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper

Authors: Daniel Y. Abebe, Jeonghyun Jang, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √("3"), nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).

Keywords: circular hollow steel damper, structural characteristics, effective size, effective section, large deformation, FE analysis

Procedia PDF Downloads 361
113 Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained.

Keywords: SS400 steel, circular hollow steel damper, effective size, quasi static loading, FE analysis

Procedia PDF Downloads 431
112 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper

Procedia PDF Downloads 208
111 Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis

Authors: Gurubasavaraju T. M.

Abstract:

The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating.

Keywords: MR fluid, double ended MR damper, CFD, FEA

Procedia PDF Downloads 180
110 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System

Authors: Asad Naeem, Jinkoo Kim

Abstract:

This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.

Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures

Procedia PDF Downloads 179
109 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness

Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong

Abstract:

Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.

Keywords: equivalent stiffness, finite element model, free vibration response, Stockbridge damper

Procedia PDF Downloads 284
108 Review and Evaluation of Viscose Damper on Structural Responses

Authors: Ehsan Sadie

Abstract:

Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.

Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper

Procedia PDF Downloads 115
107 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures

Authors: Galih Permana, Yuskar Lase

Abstract:

In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.

Keywords: building, coupling beam, damper, nonlinear time history analysis

Procedia PDF Downloads 172
106 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 403
105 Optimization and Vibration Suppression of Double Tuned Inertial Mass Damper of Damped System

Authors: Chaozhi Yang, Xinzhong Chen, Guoqing Huang

Abstract:

Inerter is a two-terminal inertial element that can produce apparent mass far larger than its physical mass. A double tuned inertial mass damper (DTIMD) is developed by combining a spring with an inerter and a dashpot in series to replace the viscous damper of a tuned mass damper (TMD), and its performance is investigated. Firstly, the DTIMD is optimized numerically with H∞ and H2 methods considering the system’s damping based on the single-degree-of-freedom (SDOF)-DTIMD system, and the optimal structural parameters are obtained. Then, compared with a TMD, the control effect of the DTIMD with the optimal structural parameters on wind-induced vibration of a wind turbine in downwind direction under the shutdown condition is studied. The results demonstrate that the vibration suppression of the DTIMD is superior than that of a TMD at the same mass ratio. And at the identical vibration suppression, the tuned mass of the DTIMD can be reduced by up to 40% compared with a TMD.

Keywords: wind-induced vibration, vibration control, inerter, tuned mass damper, damped system

Procedia PDF Downloads 166
104 Linear Semi Active Controller of Magneto-Rheological Damper for Seismic Vibration Attenuation

Authors: Zizouni Khaled, Fali Leyla, Sadek Younes, Bousserhane Ismail Khalil

Abstract:

In structural vibration caused principally by an earthquake excitation, the most vibration’s attenuation system used recently is the semi active control with a Magneto Rheological Damper device. This control was a subject of many researches and works in the last years. The big challenges of searchers in this case is to propose an adequate controller with a robust algorithm of current or tension adjustment. In this present paper, a linear controller is proposed to control the MR damper using to reduce a vibrations of three story structure exposed to El Centro’s 1940 and Boumerdès 2003 earthquakes. In this example, the MR damper is installed in the first floor of the structure. The numerical simulations results of the proposed linear control with a feedback law based on clipped optimal algorithm showed the feasibility of the semi active control to protecting civil structures. The comparison of the controlled structure and uncontrolled structures responses illustrate clearly the performance and the effectiveness of the simple proposed approach.

Keywords: MR damper, seismic vibration, semi-active control

Procedia PDF Downloads 284
103 Robust Control Design and Analysis Using SCILAB for a Mass-Spring-Damper System

Authors: Yoonsoo Kim

Abstract:

This paper introduces an open-source software package SCILAB, an alternative of MATLAB, which can be used for robust control design and analysis of a typical mass-spring-damper (MSD) system. Using the previously published ideas in this popular mechanical system is considered to provide another example of usefulness of SCILAB for advanced control design.

Keywords: robust control, SCILAB, mass-spring-damper (MSD), popular mechanical systems

Procedia PDF Downloads 472
102 Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review

Authors: Jay Gohel, Anant Parghi

Abstract:

A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD.

Keywords: earthquake, wind, tuned liquid column damper, passive response control, structures

Procedia PDF Downloads 208
101 Vibration Analysis of Power Lines with Moving Dampers

Authors: Mohammad Bukhari, Oumar Barry

Abstract:

In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies.

Keywords: absorber performance, Aeolian vibration, Hamilton’s principle, stockbridge damper

Procedia PDF Downloads 267
100 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion

Authors: M. Yoneda

Abstract:

It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.

Keywords: dynamic interaction, footbridge, stationary people, structural damping

Procedia PDF Downloads 274
99 Hybrid Seismic Energy Dissipation Devices Made of Viscoelastic Pad and Steel Plate

Authors: Jinkoo Kim, Minsung Kim

Abstract:

This study develops a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A cyclic loading test is conducted on a test specimen to validate the seismic performance of the hybrid damper. Then a moment-framed model structure is designed without seismic load so that it is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis and the life cycle cost evaluation of the structure with and without the dampers. The analysis results show that the model structure has reduced probability of reaching damage states, especially the complete damage state, after seismic retrofit. The expected damage cost and consequently the life cycle cost of the retrofitted structure turn out to be significantly small compared with those of the original structure. Acknowledgement: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R & D program (N043100016).

Keywords: seismic retrofit, slit dampers, friction dampers, hybrid dampers

Procedia PDF Downloads 282
98 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper

Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam

Abstract:

Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.

Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook

Procedia PDF Downloads 96
97 Seismic Retrofit of Tall Building Structure with Viscous, Visco-Elastic, Visco-Plastic Damper

Authors: Nicolas Bae, Theodore L. Karavasilis

Abstract:

Increasingly, a large number of new and existing tall buildings are required to improve their resilient performance against strong winds and earthquakes to minimize direct, as well as indirect damages to society. Those advent stationary functions of tall building structures in metropolitan regions can be severely hazardous, in socio-economic terms, which also increase the requirement of advanced seismic performance. To achieve these progressive requirements, the seismic reinforcement for some old, conventional buildings have become enormously costly. The methods of increasing the buildings’ resilience against wind or earthquake loads have also become more advanced. Up to now, vibration control devices, such as the passive damper system, is still regarded as an effective and an easy-to-install option, in improving the seismic resilience of buildings at affordable prices. The main purpose of this paper is to examine 1) the optimization of the shape of visco plastic brace damper (VPBD) system which is one of hybrid damper system so that it can maximize its energy dissipation capacity in tall buildings against wind and earthquake. 2) the verification of the seismic performance of the visco plastic brace damper system in tall buildings; up to forty-storey high steel frame buildings, by comparing the results of Non-Linear Response History Analysis (NLRHA), with and without a damper system. The most significant contribution of this research is to introduce the optimized hybrid damper system that is adequate for high rise buildings. The efficiency of this visco plastic brace damper system and the advantages of its use in tall buildings can be verified since tall buildings tend to be affected by wind load at its normal state and also by earthquake load after yielding of steel plates. The modeling of the prototype tall building will be conducted using the Opensees software. Three types of modeling were used to verify the performance of the damper (MRF, MRF with visco-elastic, MRF with visco-plastic model) 22-set seismic records used and the scaling procedure was followed according to the FEMA code. It is shown that MRF with viscous, visco-elastic damper, it is superior effective to reduce inelastic deformation such as roof displacement, maximum story drift, roof velocity compared to the MRF only.

Keywords: tall steel building, seismic retrofit, viscous, viscoelastic damper, performance based design, resilience based design

Procedia PDF Downloads 192
96 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices

Authors: Mohammed Saleh Rezk, Reza Kashani

Abstract:

Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.

Keywords: viscoelastic, damper, distributed damping, tuned mass damper

Procedia PDF Downloads 107
95 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 223
94 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model

Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu

Abstract:

Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.

Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis

Procedia PDF Downloads 370
93 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 493
92 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 138
91 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles

Authors: Tobias Schramm, Günther Prokop

Abstract:

Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.

Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation

Procedia PDF Downloads 115
90 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 174
89 Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures

Authors: Minjung Kim, Hyunkoo Kang, Jinkoo Kim

Abstract:

In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm.

Keywords: seismic retrofit, slit dampers, genetic algorithm, jacketing, capacity spectrum method

Procedia PDF Downloads 274
88 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Authors: Apetsi K. Ampiah, Zhao Xin

Abstract:

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Keywords: friction damper, seismic, slip load, viscous damper

Procedia PDF Downloads 168