Abstracts | Mathematical and Computational Sciences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1436

World Academy of Science, Engineering and Technology

[Mathematical and Computational Sciences]

Online ISSN : 1307-6892

896 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

Keywords: tangent line, fractional dimension, root, optimization problem

Procedia PDF Downloads 192
895 Dynamic Analysis of Differential Systems with Infinite Memory and Damping

Authors: Kun-Peng Jin, Jin Liang, Ti-Jun Xiao

Abstract:

In this work, we are concerned with the dynamic behaviors of solutions to some coupled systems with infinite memory, which consist of two partial differential equations where only one partial differential equation has damping. Such coupled systems are good mathematical models to describe the deformation and stress characteristics of some viscoelastic materials affected by temperature change, external forces, and other factors. By using the theory of operator semigroups, we give wellposedness results for the Cauchy problem for these coupled systems. Then, with the help of some auxiliary functions and lemmas, which are specially designed for overcoming difficulties in the proof, we show that the solutions of the coupled systems decay to zero in a strong way under a few basic conditions. The results in this dynamic analysis of coupled systems are generalizations of many existing results.

Keywords: dynamic analysis, coupled system, infinite memory, damping.

Procedia PDF Downloads 221
894 A Study of Evolutional Control Systems

Authors: Ti-Jun Xiao, Zhe Xu

Abstract:

Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.

Keywords: evolutional control system, controllability, boundary control, existence and uniqueness

Procedia PDF Downloads 222
893 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho

Abstract:

We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.

Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation

Procedia PDF Downloads 208
892 Nonlinear Evolution on Graphs

Authors: Benniche Omar

Abstract:

We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.

Keywords: abstract differential equation, graph, tangency condition, viability

Procedia PDF Downloads 144
891 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software

Authors: Marian Sagat, Mariana Remesikova

Abstract:

In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.

Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software

Procedia PDF Downloads 150
890 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
889 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda

Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse

Abstract:

In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.

Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system

Procedia PDF Downloads 244
888 A Study of Two Disease Models: With and Without Incubation Period

Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle

Abstract:

The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a  mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.

Keywords: asymptotic stability, Hartman-Grobman stability criterion, incubation period, Routh-Hurwitz criterion, Runge-Kutta method

Procedia PDF Downloads 175
887 A Discrete Logit Survival Model with a Smooth Baseline Hazard for Age at First Alcohol Intake among Students at Tertiary Institutions in Thohoyandou, South Africa

Authors: A. Bere, H. G. Sithuba, K. Kyei, C. Sigauke

Abstract:

We employ a discrete logit survival model to investigate the risk factors for early alcohol intake among students at two tertiary institutions in Thohoyandou, South Africa. Data were collected from a sample of 744 students using a self-administered questionnaire. Significant covariates were arrived at through a regularization algorithm implemented using the glmmLasso package. The tuning parameter was determined using a five-fold cross-validation algorithm. The baseline hazard was modelled as a smooth function of time through the use of spline functions. The results show that the hazard of initial alcohol intake peaks at the age of about 16 years and that at any given time, being of a male gender, prior use of other drugs, having drinking peers, having experienced negative life events and physical abuse are associated with a higher risk of alcohol intake debut.

Keywords: cross-validation, discrete hazard model, LASSO, smooth baseline hazard

Procedia PDF Downloads 192
886 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution

Procedia PDF Downloads 300
885 Spatial Scale of Clustering of Residential Burglary and Its Dependence on Temporal Scale

Authors: Mohammed A. Alazawi, Shiguo Jiang, Steven F. Messner

Abstract:

Research has long focused on two main spatial aspects of crime: spatial patterns and spatial processes. When analyzing these patterns and processes, a key issue has been to determine the proper spatial scale. In addition, it is important to consider the possibility that these patterns and processes might differ appreciably for different temporal scales and might vary across geographic units of analysis. We examine the spatial-temporal dependence of residential burglary. This dependence is tested at varying geographical scales and temporal aggregations. The analyses are based on recorded incidents of crime in Columbus, Ohio during the 1994-2002 period. We implement point pattern analysis on the crime points using Ripley’s K function. The results indicate that spatial point patterns of residential burglary reveal spatial scales of clustering relatively larger than the average size of census tracts of the study area. Also, spatial scale is independent of temporal scale. The results of our analyses concerning the geographic scale of spatial patterns and processes can inform the development of effective policies for crime control.

Keywords: inhomogeneous K function, residential burglary, spatial point pattern, spatial scale, temporal scale

Procedia PDF Downloads 345
884 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Authors: Mohsen Ziaee

Abstract:

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords: scheduling, flexible job shop, makespan, mixed integer linear programming

Procedia PDF Downloads 186
883 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan

Authors: Mohsen Ziaee

Abstract:

Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.

Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic

Procedia PDF Downloads 207
882 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data

Authors: Salihah Alghamdi, Surajit Ray

Abstract:

Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.

Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray

Procedia PDF Downloads 140
881 Location-Domination on Join of Two Graphs and Their Complements

Authors: Analen Malnegro, Gina Malacas

Abstract:

Dominating sets and related topics have been studied extensively in the past few decades. A dominating set of a graph G is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G. Some problems involving detection devices can be modeled with graphs. Finding the minimum number of devices needed according to the type of devices and the necessity of locating the object gives rise to locating-dominating sets. A subset S of vertices of a graph G is called locating-dominating set, LD-set for short, if it is a dominating set and if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. The location-domination number λ(G) is the minimum cardinality of an LD-set for G. The complement of a graph G is a graph Ḡ on same vertices such that two distinct vertices of Ḡ are adjacent if and only if they are not adjacent in G. An LD-set of a graph G is global if it is an LD-set of both G and its complement Ḡ. The global location-domination number λg(G) is defined as the minimum cardinality of a global LD-set of G. In this paper, global LD-sets on the join of two graphs are characterized. Global location-domination numbers of these graphs are also determined.

Keywords: dominating set, global locating-dominating set, global location-domination number, locating-dominating set, location-domination number

Procedia PDF Downloads 184
880 A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions

Authors: Jean-Marie Vilaire, Ricardo Abreu-Blaya, Juan Bory-Reyes

Abstract:

The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories.

Keywords: Beltrami equation, Douglis algebra-valued function, Hypercomplex Cauchy type integral, Sokhotski-Plemelj formulae

Procedia PDF Downloads 250
879 Covariate-Adjusted Response-Adaptive Designs for Semi-Parametric Survival Responses

Authors: Ayon Mukherjee

Abstract:

Covariate-adjusted response-adaptive (CARA) designs use the available responses to skew the treatment allocation in a clinical trial in towards treatment found at an interim stage to be best for a given patient's covariate profile. Extensive research has been done on various aspects of CARA designs with the patient responses assumed to follow a parametric model. However, ranges of application for such designs are limited in real-life clinical trials where the responses infrequently fit a certain parametric form. On the other hand, robust estimates for the covariate-adjusted treatment effects are obtained from the parametric assumption. To balance these two requirements, designs are developed which are free from distributional assumptions about the survival responses, relying only on the assumption of proportional hazards for the two treatment arms. The proposed designs are developed by deriving two types of optimum allocation designs, and also by using a distribution function to link the past allocation, covariate and response histories to the present allocation. The optimal designs are based on biased coin procedures, with a bias towards the better treatment arm. These are the doubly-adaptive biased coin design (DBCD) and the efficient randomized adaptive design (ERADE). The treatment allocation proportions for these designs converge to the expected target values, which are functions of the Cox regression coefficients that are estimated sequentially. These expected target values are derived based on constrained optimization problems and are updated as information accrues with sequential arrival of patients. The design based on the link function is derived using the distribution function of a probit model whose parameters are adjusted based on the covariate profile of the incoming patient. To apply such designs, the treatment allocation probabilities are sequentially modified based on the treatment allocation history, response history, previous patients’ covariates and also the covariates of the incoming patient. Given these information, an expression is obtained for the conditional probability of a patient allocation to a treatment arm. Based on simulation studies, it is found that the ERADE is preferable to the DBCD when the main aim is to minimize the variance of the observed allocation proportion and to maximize the power of the Wald test for a treatment difference. However, the former procedure being discrete tends to be slower in converging towards the expected target allocation proportion. The link function based design achieves the highest skewness of patient allocation to the best treatment arm and thus ethically is the best design. Other comparative merits of the proposed designs have been highlighted and their preferred areas of application are discussed. It is concluded that the proposed CARA designs can be considered as suitable alternatives to the traditional balanced randomization designs in survival trials in terms of the power of the Wald test, provided that response data are available during the recruitment phase of the trial to enable adaptations to the designs. Moreover, the proposed designs enable more patients to get treated with the better treatment during the trial thus making the designs more ethically attractive to the patients. An existing clinical trial has been redesigned using these methods.

Keywords: censored response, Cox regression, efficiency, ethics, optimal allocation, power, variability

Procedia PDF Downloads 165
878 Exponential Spline Solution for Singularly Perturbed Boundary Value Problems with an Uncertain-But-Bounded Parameter

Authors: Waheed Zahra, Mohamed El-Beltagy, Ashraf El Mhlawy, Reda Elkhadrawy

Abstract:

In this paper, we consider singular perturbation reaction-diffusion boundary value problems, which contain a small uncertain perturbation parameter. To solve these problems, we propose a numerical method which is based on an exponential spline and Shishkin mesh discretization. While interval analysis principle is used to deal with the uncertain parameter, sensitivity analysis has been conducted using different methods. Numerical results are provided to show the applicability and efficiency of our method, which is ε-uniform convergence of almost second order.

Keywords: singular perturbation problem, shishkin mesh, two small parameters, exponential spline, interval analysis, sensitivity analysis

Procedia PDF Downloads 274
877 Linear fractional differential equations for second kind modified Bessel functions

Authors: Jorge Olivares, Fernando Maass, Pablo Martin

Abstract:

Fractional derivatives have been considered recently as a way to solve different problems in Engineering. In this way, second kind modified Bessel functions are considered here. The order α fractional differential equations of second kind Bessel functions, Kᵥ(x), are studied with simple initial conditions. The Laplace transform and Caputo definition of fractional derivatives are considered. Solutions have been found for ν=1/3, 1/2, 2/3, -1/3, -1/2 and (-2/3). In these cases, the solutions are the sum of two hypergeometric functions. The α fractional derivatives have been for α=1/3, 1/2 and 2/3, and the above values of ν. No convergence has been found for the integer values of ν Furthermore when α has been considered as a rational found m/p, no general solution has been found. Clearly, this case is more difficult to treat than those of first kind Bessel Function.

Keywords: Caputo, modified Bessel functions, hypergeometric, linear fractional differential equations, transform Laplace

Procedia PDF Downloads 342
876 Hypergeometric Solutions to Linear Nonhomogeneous Fractional Equations with Spherical Bessel Functions of the First Kind

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

The use of fractional derivatives to different problems in Engineering and Physics has been increasing in the last decade. For this reason, we have here considered partial derivatives when the integral is a spherical Bessel function of the first kind in both regular and modified ones simple initial conditions have been also considered. In this way, the solution has been found as a combination of hypergeometric functions. The case of a general rational value for α of the fractional derivative α has been solved in a general way for alpha between zero and two. The modified spherical Bessel functions of the first kind have been also considered and how to go from the regular case to the modified one will be also shown.

Keywords: caputo fractional derivatives, hypergeometric functions, linear differential equations, spherical Bessel functions

Procedia PDF Downloads 325
875 The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique

Authors: Yeliz Karaca, Rana Karabudak

Abstract:

Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique.

Keywords: clinical decision support, clustering algorithms, multiple sclerosis, multifractal techniques

Procedia PDF Downloads 168
874 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 157
873 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
872 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 246
871 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 258
870 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling

Authors: Taehan Bae

Abstract:

In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.

Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm

Procedia PDF Downloads 224
869 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 278
868 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression

Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr

Abstract:

Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.

Keywords: design of experiments, regression analysis, SI engine, statistical modeling

Procedia PDF Downloads 186
867 Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube

Authors: Muhammad Abdullah, Asma Rashid Butt, Nauman Raza

Abstract:

Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs.

Keywords: viscous fluid, magnetic particles, fractional calculus, laplace transformation

Procedia PDF Downloads 206