Search results for: boundary integral equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2025

Search results for: boundary integral equation

1995 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
1994 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: Fengxia Zheng, Chuanyun Gu

Abstract:

By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
1993 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Chuanyun Gu, Shouming Zhong

Abstract:

In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1992 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations

Authors: Mahmoud Zarrini, Sanaz Torkaman

Abstract:

In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.

Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1991 Research of a Multistep Method Applied to Numerical Solution of Volterra Integro-Differential Equation

Authors: M.Imanova, G.Mehdiyeva, V.Ibrahimov

Abstract:

Solution of some practical problems is reduced to the solution of the integro-differential equations. But for the numerical solution of such equations basically quadrature methods or its combination with multistep or one-step methods are used. The quadrature methods basically is applied to calculation of the integral participating in right hand side of integro-differential equations. As this integral is of Volterra type, it is obvious that at replacement with its integrated sum the upper limit of the sum depends on a current point in which values of the integral are defined. Thus we receive the integrated sum with variable boundary, to work with is hardly. Therefore multistep method with the constant coefficients, which is free from noted lack and gives the way for finding it-s coefficients is present.

Keywords: Volterra integro-differential equations, multistepmethods, finite-difference methods, initial value problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1990 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem

Authors: Adil AL-Rammahi

Abstract:

In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.

Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
1989 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method

Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.

Abstract:

The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.

Keywords: Acoustic radiation, boundary element

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1988 The Particle Swarm Optimization Against the Runge’s Phenomenon: Application to the Generalized Integral Quadrature Method

Authors: A. Zerarka, A. Soukeur, N. Khelil

Abstract:

In the present work, we introduce the particle swarm optimization called (PSO in short) to avoid the Runge-s phenomenon occurring in many numerical problems. This new approach is tested with some numerical examples including the generalized integral quadrature method in order to solve the Volterra-s integral equations

Keywords: Integral equation, particle swarm optimization, Runge's phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
1987 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal

Abstract:

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
1986 Solution of The KdV Equation with Asymptotic Degeneracy

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1985 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

Authors: Nik Mohd Asri Nik Long, Koo Lee Feng, Zainidin K. Eshkuvatov, A. A. Khaldjigitov

Abstract:

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

Keywords: Elliptical crack, stress intensity factors, hyper singular integral equation, shear loading, conformal mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1984 Genetic Algorithm Approach for Solving the Falkner–Skan Equation

Authors: Indu Saini, Phool Singh, Vikas Malik

Abstract:

A novel method based on Genetic Algorithm to solve the boundary value problems (BVPs) of the Falkner–Skan equation over a semi-infinite interval has been presented. In our approach, we use the free boundary formulation to truncate the semi-infinite interval into a finite one. Then we use the shooting method based on Genetic Algorithm to transform the BVP into initial value problems (IVPs). Genetic Algorithm is used to calculate shooting angle. The initial value problems arisen during shooting are computed by Runge-Kutta Fehlberg method. The numerical solutions obtained by the present method are in agreement with those obtained by previous authors.

Keywords: Boundary Layer Flow, Falkner–Skan equation, Genetic Algorithm, Shooting method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1983 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method

Authors: A. Soltani, M. Karimi Demneh

Abstract:

In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.

Keywords: Boundary element method, natural frequency, noise, vehicle cabin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500
1982 A Numerical Algorithm for Positive Solutions of Concave and Convex Elliptic Equation on R2

Authors: Hailong Zhu, Zhaoxiang Li

Abstract:

In this paper we investigate numerically positive solutions of the equation -Δu = λuq+up with Dirichlet boundary condition in a boundary domain ╬® for λ > 0 and 0 < q < 1 < p < 2*, we will compute and visualize the range of λ, this problem achieves a numerical solution.

Keywords: positive solutions, concave-convex, sub-super solution method, pseudo arclength method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
1981 Basket Option Pricing under Jump Diffusion Models

Authors: Ali Safdari-Vaighani

Abstract:

Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Keywords: Radial basis function, basket option, jump diffusion, RBF-PUM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
1980 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile

Authors: V. Ghadamyari, F. Samadi, F. Kowsary

Abstract:

An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.

Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
1979 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand

Abstract:

The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.

Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
1978 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629
1977 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
1976 Contact Problem for an Elastic Layered Composite Resting on Rigid Flat Supports

Authors: T. S. Ozsahin, V. Kahya, A. Birinci, A. O. Cakiroglu

Abstract:

In this study, the contact problem of a layered composite which consists of two materials with different elastic constants and heights resting on two rigid flat supports with sharp edges is considered. The effect of gravity is neglected. While friction between the layers is taken into account, it is assumed that there is no friction between the supports and the layered composite so that only compressive tractions can be transmitted across the interface. The layered composite is subjected to a uniform clamping pressure over a finite portion of its top surface. The problem is reduced to a singular integral equation in which the contact pressure is the unknown function. The singular integral equation is evaluated numerically and the results for various dimensionless quantities are presented in graphical forms.

Keywords: Frictionless contact, Layered composite, Singularintegral equation, The theory of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
1975 An Identification Method of Geological Boundary Using Elastic Waves

Authors: Masamitsu Chikaraishi, Mutsuto Kawahara

Abstract:

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
1974 Numerical Evaluation of Turbulent Friction on Walls in the Penstock of the Trois-Gorges Dam by the Swamee-Jain Method

Authors: T. Tchawe Moukam, N. Ngongang François, D. Thomas, K. Bienvenu, T. -Toko Dénis

Abstract:

Since the expression of the coefficient of friction by Colebrook-White which turns out to be an implicit equation, equations have been developed to facilitate their applicability. In this work, this equation was applied to the penstock of the Three Gorges dam in order to observe the evolution of the turbulent boundary layer and the friction along the walls. Thus, the study is being carried out using a 3D digital approach in FLUENT in order to take into account the wall effects. It appears that according to the position of the portions, we have a variation in the evolutions of the turbulent friction and of the values of the boundary layer. We also observe that the inclination of the pipe has a significant influence on this turbulent friction; similarly, one could not make a fair evaluation of the latter without specifying the choice and location of the wall.

Keywords: Hydroelectric dam, penstock, turbulent friction, boundary layer, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379
1973 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
1972 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA

Authors: G. Parmar, R. Prasad, S. Mukherjee

Abstract:

The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.

Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136
1971 BEM Formulations Based on Kirchhoffs Hypoyhesis to Perform Linear Bending Analysis of Plates Reinforced by Beams

Authors: Gabriela R. Fernandes, Renato F. Denadai, Guido J. Denipotti

Abstract:

In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoff's hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a slab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. On these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degree s of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1970 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long

Abstract:

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1969 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
1968 On Method of Fundamental Solution for Nondestructive Testing

Authors: Jieer Wu, Zheshu Ma

Abstract:

Nondestructive testing in engineering is an inverse Cauchy problem for Laplace equation. In this paper the problem of nondestructive testing is expressed by a Laplace-s equation with third-kind boundary conditions. In order to find unknown values on the boundary, the method of fundamental solution is introduced and realized. Because of the ill-posedness of studied problems, the TSVD regularization technique in combination with L-curve criteria and Generalized Cross Validation criteria is employed. Numerical results are shown that the TSVD method combined with L-curve criteria is more efficient than the TSVD method combined with GCV criteria. The abstract goes here.

Keywords: ill-posed, TSVD, Laplace's equation, inverse problem, L-curve, Generalized Cross Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
1967 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract:

We study the existence of positive solutions to the three points difference-summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: Positive solution, Boundary value problem, Fixed point theorem, Cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1966 Integral Methods in the Determination of Temperature Fields of Cooled Blades of Gas Turbines

Authors: C. Ardil

Abstract:

A mathematical model and an effective numerical method for calculating the temperature field of the profile part of convection cooled blades have been developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli.The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations.The reliability of the developed methods is confirmed by the calculation-experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of a gas turbine.

Keywords: Integral methods, determination of temperature fields, cooled blades, gas turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697