Search results for: Nebi Gedik
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Search results for: Nebi Gedik

10 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification

Authors: Nebi Gedik, Ayten Atasoy

Abstract:

This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.

Keywords: Breast cancer, wave atom transform, SVM, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
9 Wave Atom Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.

Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
8 Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method

Authors: Nebi Gedik

Abstract:

The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.

Keywords: Motor imagery, EEG, wave atom transform, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
7 An Approach for the Prediction of Cardiovascular Diseases

Authors: Nebi Gedik

Abstract:

Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.

Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168
6 Two Class Motor Imagery Classification via Wave Atom Sub-Bants

Authors: Nebi Gedik

Abstract:

The goal of motor image brain computer interface research is to create a link between the central nervous system and a computer or device. The most important signal for brain-computer interface is the electroencephalogram. The aim of this research is to explore a set of effective features from EEG signals, separated into frequency bands, using wave atom sub-bands to discriminate right and left-hand motor imagery signals. Over the transform coefficients, feature vectors are constructed for each frequency range and each transform sub-band, and their classification performances are tested. The method is validated using EEG signals from the BCI competition III dataset IIIa and classifiers such as support vector machine and k-nearest neighbors.

Keywords: motor imagery, EEG, Wave atom transform sub-bands, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
5 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133
4 Curvelet Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.

Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
3 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
2 Impact of Nonthermal Pulsed Electric Field on Bioactive Compounds and Browning Activity in Emblica officinalis Juice

Authors: Vasudha Bansal, M. L. Singla, C. Ghanshyam

Abstract:

The effect of nonthermal pulsed electric field (PEF) and thermal treatment (90⁰C for 60s) was studied on quality parameters of emblica officinalis juice for the period of 6 weeks at 4⁰C using monopolar rectangular pulse of 1µs width. The PEF treatment was given using static chamber at 24kV/cm for 500µs. The quality of emblica officinalis juice was investigated in terms of non enzymatic browning index (NEBI), 5-hydroxymethyl-2-furfural (HMF), total polyphenol content and antioxidant capacity. ⁰Brix, pH and conductivity were evaluated as physical parameters. The aim of the work was to investigate the effect of PEF on the retention of bioactive compounds and retardation of browning activity. The results showed that conventional thermal treatment had led to a significant (p < 0.05) decrease of 48.15% in polyphenol content (129.56 mg of GAE L-1), with higher NEBI and HMF formation (p < 0.05) whilst PEF suppressed NEBI and retained higher polyphenol compounds (168.59 mg GAE L-1) with limiting the loss to 32.56% along maximum free radical scavenging activity (92.07%). However, pH, ⁰brix and electrical conductivity of treated juice samples remain unaffected. Therefore, PEF can be considered as an effective nonthermal treatment for retaining bioactive compounds along suppressing browning of emblica juice.

 

Keywords: Emblica officinalis juice, Free radical scavenging activity, Pulsed electric field, Total polyphenol content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
1 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas

Abstract:

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Keywords: Finite element analysis, sliding door, experimental, verification, vehicle tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3095