Search results for: Multi-objective%20decision%20support
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37

Search results for: Multi-objective%20decision%20support

7 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Keywords: Power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
6 Aerodynamics and Optimization of Airfoil Under Ground Effect

Authors: Kyoungwoo Park, Byeong Sam Kim, Juhee Lee, Kwang Soo Kim

Abstract:

The Prediction of aerodynamic characteristics and shape optimization of airfoil under the ground effect have been carried out by integration of computational fluid dynamics and the multiobjective Pareto-based genetic algorithm. The main flow characteristics around an airfoil of WIG craft are lift force, lift-to-drag ratio and static height stability (H.S). However, they show a strong trade-off phenomenon so that it is not easy to satisfy the design requirements simultaneously. This difficulty can be resolved by the optimal design. The above mentioned three characteristics are chosen as the objective functions and NACA0015 airfoil is considered as a baseline model in the present study. The profile of airfoil is constructed by Bezier curves with fourteen control points and these control points are adopted as the design variables. For multi-objective optimization problems, the optimal solutions are not unique but a set of non-dominated optima and they are called Pareto frontiers or Pareto sets. As the results of optimization, forty numbers of non- dominated Pareto optima can be obtained at thirty evolutions.

Keywords: Aerodynamics, Shape optimization, Airfoil on WIGcraft, Genetic algorithm, Computational fluid dynamics (CFD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3166
5 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari

Abstract:

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
4 Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey

Authors: C. Ardil

Abstract:

In this research, a multidimensional  compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional  compromise optimization model. Finally, multidimensional  compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey. 

Keywords: Standard deviation, performance evaluation, multicriteria decision making, multidimensional compromise optimization, vector normalization, multicriteria decision making, multicriteria analysis, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
3 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept

Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman

Abstract:

Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.

Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
2 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
1 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981