Search results for: Heart sound classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1564

Search results for: Heart sound classification

1564 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1563 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
1562 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1561 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
1560 Single Input ANC for Suppression of Breath Sound

Authors: Yunjung Lee, Pil Un Kim, Gyhyoun Lee, Jin Ho Cho, Myoung Nam Kim

Abstract:

Various sounds generated in the chest are included in auscultation sound. Adaptive Noise Canceller (ANC) is one of the useful techniques for biomedical signal. But the ANC is not suitable for auscultation sound. Because the ANC needs two input channels as a primary signal and a reference signals, but a stethoscope can provide just one input sound. Therefore, in this paper, it was proposed the Single Input ANC (SIANC) for suppression of breath sound in a cardiac auscultation sound. For the SIANC, it was proposed that the reference generation system which included Heart Sound Detector, Control and Reference Generator. By experiment and comparison, it was confirmed that the proposed SIANC was efficient for heart sound enhancement and it was independent of variations of a heartbeat.

Keywords: Adaptive noise canceller, Auscultation, Breath soundsuppression, Signal enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1559 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network

Authors: Katsumi Hirata

Abstract:

Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.

Keywords: Bispectrum, convolutional neural network, environmental sound, slice bispectrogram, spectrogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
1558 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: Arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
1557 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: Automatic equalization, genre classification, music segment detection, spatial audio processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1556 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.

Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
1555 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

Authors: S. Souli, Z. Lachiri

Abstract:

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.

To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1554 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease

Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan

Abstract:

In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.

Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1553 An Improved QRS Complex Detection for Online Medical Diagnosis

Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani

Abstract:

This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.

Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
1552 Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique

Authors: Einalou Z., Najafi Z., Maghooli K. Zandi Y, Sheibeigi A

Abstract:

In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.

Keywords: Cepstrum, databank, digestive disease, acousticsignal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1551 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134
1550 Feature Selection Approaches with Missing Values Handling for Data Mining - A Case Study of Heart Failure Dataset

Authors: N.Poolsawad, C.Kambhampati, J. G. F. Cleland

Abstract:

In this paper, we investigated the characteristic of a clinical dataseton the feature selection and classification measurements which deal with missing values problem.And also posed the appropriated techniques to achieve the aim of the activity; in this research aims to find features that have high effect to mortality and mortality time frame. We quantify the complexity of a clinical dataset. According to the complexity of the dataset, we proposed the data mining processto cope their complexity; missing values, high dimensionality, and the prediction problem by using the methods of missing value replacement, feature selection, and classification.The experimental results will extend to develop the prediction model for cardiology.

Keywords: feature selection, missing values, classification, clinical dataset, heart failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
1549 Wavelet Feature Selection Approach for Heart Murmur Classification

Authors: G. Venkata Hari Prasad, P. Rajesh Kumar

Abstract:

Phonocardiography is important in appraisal of congenital heart disease and pulmonary hypertension as it reflects the duration of right ventricular systoles. The systolic murmur in patients with intra-cardiac shunt decreases as pulmonary hypertension develops and may eventually disappear completely as the pulmonary pressure reaches systemic level. Phonocardiography and auscultation are non-invasive, low-cost, and accurate methods to assess heart disease. In this work an objective signal processing tool to extract information from phonocardiography signal using Wavelet is proposed to classify the murmur as normal or abnormal. Since the feature vector is large, a Binary Particle Swarm Optimization (PSO) with mutation for feature selection is proposed. The extracted features improve the classification accuracy and were tested across various classifiers including Naïve Bayes, kNN, C4.5, and SVM.

Keywords: Phonocardiography, Coiflet, Feature selection, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1548 Dynamic Features Selection for Heart Disease Classification

Authors: Walid MOUDANI

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
1547 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1546 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm

Authors: Latha Parthiban, R. Subramanian

Abstract:

Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.

Keywords: CANFIS, genetic algorithms, heart disease, membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3993
1545 Automatic Recognition of an Unknown and Time-Varying Number of Simultaneous Environmental Sound Sources

Authors: S. Ntalampiras, I. Potamitis, N. Fakotakis, S. Kouzoupis

Abstract:

The present work faces the problem of automatic enumeration and recognition of an unknown and time-varying number of environmental sound sources while using a single microphone. The assumption that is made is that the sound recorded is a realization of sound sources belonging to a group of audio classes which is known a-priori. We describe two variations of the same principle which is to calculate the distance between the current unknown audio frame and all possible combinations of the classes that are assumed to span the soundscene. We concentrate on categorizing environmental sound sources, such as birds, insects etc. in the task of monitoring the biodiversity of a specific habitat.

Keywords: automatic recognition of multiple sound sources, enumeration of sound sources, computational ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1544 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: Cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
1543 Estimating the Flow Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is found. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: Flow generated sound, sound processing, speed, wave power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
1542 Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi, Y. Kurosawa, Y. Koike

Abstract:

Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.

Keywords: Simulation, FEM, air viscosity, damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
1541 Altered States of Consciousness in Narrative Cinema: Subjective Film Sound

Authors: Mladen Milicevic

Abstract:

In this paper subjective film sound will be addressed as it gets represented in narrative cinema. First, “meta-diegetic” sound will be briefly explained followed by transition to “oneiric” sound. The representation of oneiric sound refers to a situation where film characters are experiencing some sort of an altered state of consciousness. Looking at an antlered state of consciousness in terms of human brain processes will point out to the cinematic ways of expression, which “mimic” those processes. Using several examples for different films will illustrate these points.

Keywords: Oneiric, ASC (altered states of consciousness), film, sound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635
1540 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

Authors: Yoshio Kurosawa, Takao Yamaguchi

Abstract:

High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.

Keywords: Automobile, acoustics, porous material, Transfer Matrix Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1539 Sound Absorption of Arenga Pinnata Natural Fiber

Authors: Lindawati Ismail, Mohd. Imran Ghazali, Shahruddin Mahzan, Ahmad Mujahid Ahmad Zaidi

Abstract:

Arenga pinnata is an abundantly natural fiber that can be used for sound proof material. However, the scientific data of acoustics properties of Arenga pinnata was not available yet. In this study the sound absorption of pure arenga pinnata was measured. The thickness of Arenga pinnata was varied in 10 mm, 20 mm, 30mm, and 40mm. This work was carried out to investigate the potential of using Arenga pinnata fiber as raw material for sound absorbing material. Impedance Tube Method was used to measure sound absorption coefficient (α). The Measurements was done in accordance with ASTM E1050-98, that is the standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system . The results showed that sound absorption coefficients of Arenga pinnata were good from 2000 Hz to 5000 Hz within the range of 0.75 – 0.90. The optimum sound absorption coefficient was obtained from the thickness of 40 mm. These results indicated that Arenga pinnata fiber is promising to be used as raw material of sound absorbing material with low cost, light, and biodegradable.

Keywords: Sound absorption, Arenga pinnata, raw material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3618
1538 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
1537 Enhancement of a 3D Sound Using Psychoacoustics

Authors: Kyosik Koo, Hyungtai Cha

Abstract:

Generally, in order to create 3D sound using binaural systems, we use head related transfer functions (HRTF) including the information of sounds which is arrived to our ears. But it can decline some three-dimensional effects in the area of a cone of confusion between front and back directions, because of the characteristics of HRTF. In this paper, we propose a new method to use psychoacoustics theory that reduces the confusion of sound image localization. In the method, HRTF spectrum characteristic is enhanced by using the energy ratio of the bark band. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods

Keywords: HRTF, 3D sound, Psychoacoustics, Localization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1536 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1535 Development of Sleep Quality Index Using Heart Rate

Authors: Dongjoo Kim, Chang-Sik Son, Won-Seok Kang

Abstract:

Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep.

Keywords: Sleep, sleep quality, heart rate, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504