Search results for: Building stock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1398

Search results for: Building stock

1398 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: Building stock energy modelling, energy-savings, archetype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
1397 Assessment of Rehabilitation Possibilities in Case of Budapest Jewish Quarter Building Stock

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the Budapest 7th district is known as the former Jewish Quarter. The majority of the historical building stock contains multi-story tenement houses with courtyards, built around the end of the 19th century. Various rehabilitation and urban planning attempt occurred until today, mostly left unfinished. Present paper collects the past rehabilitation plans, actions and their effect which took place in the former Jewish District of Budapest. The authors aim to assess the boundaries of a complex building stock rehabilitation, by taking into account the monument protection guidelines. As a main focus of the research, structural as well as energetic rehabilitation possibilities are analyzed in case of each building by using Geographic Information System (GIS) methods.

Keywords: Geographic information system, Hungary, Jewish quarter, monument, protection, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
1396 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: Energy efficiency, heritage, historical building, renovation, technical solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
1395 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection

Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan

Abstract:

This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market

Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
1394 The Impact of Subsequent Stock Market Liberalization on the Integration of Stock Markets in ASEAN-4 + South Korea

Authors: Noor Azryani Auzairy, Rubi Ahmad

Abstract:

To strengthen the capital market, there is a need to integrate the capital markets within the region by removing legal or informal restriction, specifically, stock market liberalization. Thus the paper is to investigate the effects of the subsequent stock market liberalization on stock market integration in 4 ASEAN countries (Malaysia, Indonesia, Thailand, Singapore) and Korea from 1997 to 2007. The correlation between stock market liberalization and stock market integration are to be examined by analyzing the stock prices and returns within the region and in comparison with the world MSCI index. Event study method is to be used with windows of ±12 months and T-7 + T. The results show that the subsequent stock market liberalization generally, gives minor positive effects to stock returns, except for one or two countries. The subsequent liberalization also integrates the markets short-run and long-run.

Keywords: ASEAN, event method, stock market integration, stock market liberalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
1393 Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets

Authors: Laura Lukmanto, Harya Widiputra, Lukas

Abstract:

Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.

Keywords: complex dynamic relationship, dynamic interaction network, interactive stock markets, stock market interdependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1392 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: Case-based reasoning, decision tree, stock selection, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
1391 Dynamic Safety-Stock Calculation

Authors: Julian Becker, Wiebke Hartmann, Sebastian Bertsch, Johannes Nywlt, Matthias Schmidt

Abstract:

In order to ensure a high service level industrial enterprises have to maintain safety-stock that directly influences the economic efficiency at the same time. This paper analyses established mathematical methods to calculate safety-stock. Therefore, the performance measured in stock and service level is appraised and the limits of several methods are depicted. Afterwards, a new dynamic approach is presented to gain an extensive method to calculate safety-stock that also takes the knowledge of future volatility into account.

Keywords: Inventory dimensioning, material requirement planning, safety-stock calculation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6877
1390 Retrofitting Measures for Existing Housing Stock in Kazakhstan

Authors: S. Yessengabulov, A. Uyzbayeva

Abstract:

Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.

Keywords: Energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1389 Are Asia-Pacific Stock Markets Predictable? Evidence from Wavelet-based Fractional Integration Estimator

Authors: Pei. P. Tan, Don. U.A. Galagedera, Elizabeth A.Maharaj

Abstract:

This paper examines predictability in stock return in developed and emergingmarkets by testing long memory in stock returns using wavelet approach. Wavelet-based maximum likelihood estimator of the fractional integration estimator is superior to the conventional Hurst exponent and Geweke and Porter-Hudak estimator in terms of asymptotic properties and mean squared error. We use 4-year moving windows to estimate the fractional integration parameter. Evidence suggests that stock return may not be predictable indeveloped countries of the Asia-Pacificregion. However, predictability of stock return insome developing countries in this region such as Indonesia, Malaysia and Philippines may not be ruled out. Stock return in the Thailand stock market appears to be not predictable after the political crisis in 2008.

Keywords: Asia-Pacific stock market, long-memory, return predictability, wavelet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
1388 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
1387 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
1386 A Hybrid Machine Learning System for Stock Market Forecasting

Authors: Rohit Choudhry, Kumkum Garg

Abstract:

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.

Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9317
1385 Integration of Asian Stock Markets

Authors: Noor A. Auzairy, Rubi Ahmad, Catherine S.F. Ho, Ros Z. Z. Sapian

Abstract:

This paper is to explore the relationship and the level of stock market integration of the Asian countries, primarily concentrating on Malaysia, Thailand, Indonesia, and South Korea, with the world from January 1997 to December 2009. The degree of short-run and long-run stock market integration of those Asian countries are analyzed in order to determine the significance of series of regional and world financial crises, liberalization policies and other financial reforms in influencing the level of stock market integration. To test for cointegration, this paper applies coefficient correlation, univariate regression analyses, cointegration tests, and vector autoregressive models (VAR) by using the four Asian stock markets main indices and the MSCI World index. The empirical findings from this work reveal that there is no long-run stock market integration for the four countries and the world market. However, there is short run integration.

Keywords: Asia, integration, relationship, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
1384 Comparative Analysis of Commercial Property and Stock-Market Investments in Nigeria

Authors: Bello Nurudeen Akinsola

Abstract:

The study analyzed the risk and returns of commercial-property in Southwestern Nigeria and selected stocksmarket investment between 2000 and 2009; compared the inflation hedging characteristics and diversification potentials of investing in commercial-property and selected stock- market investment. Primary data were collected on characteristics, rental and capital values of commercial- properties from their property managers through the use of questionnaire. Secondary data on stock prices and dividends on banking, insurance and conglomerates sectors were sourced from the Nigerian Stock Exchange (2000-2009). The result showed that average return on all the selected stock- investments was higher than that of commercial-property. As regards risk, commercial-property indicated lower risk, compared to stocks. Also the stock-investment had better inflation hedging capacity than commercial-properties; combination of both had diversification potentials. The study concluded that stock-market investment offered attractive higher return than commercial-property although with higher risk and there could be diversification benefits in combining commercial-property with stock- investment.

Keywords: Commercial-Property, Return, Risk, Stock Market

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5190
1383 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
1382 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: Corporate governance, stock price, performance, panel data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
1381 Stochastic Impact Analysis of COVID-19 on Karachi Stock Exchange

Authors: Syeda Maria Ali Shah, Asif Mansoor, Talat Sharafat Rehmani, Safia Mirza

Abstract:

The stock market of any country acts as a predictor of the economy. The spread of the COVID-19 pandemic has severely impacted the global financial markets. Besides, it has also critically affected the economy of Pakistan. In this study, we consider the role of the Karachi Stock Exchange (KSE) with regard to the Pakistan Stock Exchange and quantify the impact on macroeconomic variables in presence of COVID-19. The suitable macroeconomic variables are used to quantify the impact of COVID-19 by developing the stochastic model. The sufficiency of the computed model is attained by means of available techniques in the literature. The estimated equations are used to forecast the impact of pandemic on macroeconomic variables. The constructed model can help the policymakers take counteractive measures for restricting the influence of viruses on the Karachi Stock Market.

Keywords: COVID-19, Karachi Stock Market, macroeconomic variables, stochastic model, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
1380 The Influence of EU Regulation of Margin Requirements on Market Stock Volatility

Authors: Nadira Kaimova

Abstract:

In this paper it was examined the influence of margin regulation on stock market volatility in EU 1993 – 2014. Regulating margin requirements or haircuts for securities financing transactions has for a long time been considered as a potential tool to limit the build-up of leverage and dampen volatility in financial markets. The margin requirement dictates how much investors can borrow against these securities. Margin can be an important part of investment. Using daily and monthly stock returns and there is no convincing evidence that EU Regulation margin requirements have served to dampen stock market volatility. In this paper was detected the expected negative relation between margin requirements and the amount of margin credit outstanding. Also, it confirmed that changes in margin requirements by the EU regulation have tended to follow than lead changes in market volatility. For the analysis have been used the modified Levene statistics to test whether the standard deviation of stock returns in the 25, 50 and 100 days preceding margin changes is the same as that in the succeeding 25, 50 and 100 days. The analysis started in May 1993 when it was first empowered to set the initial margin requirement and the last sample was in May 2014. To test whether margin requirements influence stock market volatility over the long term, the sample of stock returns was divided into 14 periods, according to the 14 changes in margin requirements.

Keywords: Levene statistic, Margin Regulation, Stock Market, Volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1379 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro

Abstract:

The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.

Keywords: NARX, prediction, stock market, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
1378 An Application of a Cost Minimization Model in Determining Safety Stock Level and Location

Authors: Bahareh Amirjabbari, Nadia Bhuiyan

Abstract:

In recent decades, the lean methodology, and the development of its principles and concepts have widely been applied in supply chain management. One of the most important strategies of being lean is having efficient inventory within the chain. On the other hand, managing inventory efficiently requires appropriate management of safety stock in order to protect against increasing stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. This paper applies a safety stock cost minimization model in a manufacturing company. The model results in optimum levels and locations of safety stock within the company-s supply chain in order to minimize total logistics costs.

Keywords: Cost, efficient inventory, optimization, safety stock, supply chain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1377 The Effect of Ownership Structure on Stock Prices after Crisis: A Study on Ise 100 Index

Authors: U. Şendurur, B. Nazlıoğlu

Abstract:

Using Turkish data, in this study it is investigated that whether a firm’s ownership structure has an impact on its stock prices after the crisis. A linear regression model is conducted on the data of non-financial firms that are trading in Istanbul Stock Exchange 100 Index (ISE 100) index. The findings show that, all explanatory variables such as inside ownership, largest ownership, concentrated ownership, foreign shareholders, family controlled and dispersed ownership are not very important to explain stock prices after the crisis. Family controlled firms and concentrated ownership is positively related to stock price, dispersed ownership, largest ownership, foreign shareholders, and inside ownership structures have negative interaction between stock prices, but because of the p value is not under the value of 0.05 this relation is not significant. In addition, the analysis shows that, the shares of firms that have inside, largest and dispersed ownership structure are outperform comparing with the other firms. Furthermore, ownership concentrated firms outperform to family controlled firms.

Keywords: Financial crisis, ISE 100 Index, Ownership structure, Stock price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
1376 A New Heuristic Approach for the Stock- Cutting Problems

Authors: Stephen C. H. Leung, Defu Zhang

Abstract:

This paper addresses a stock-cutting problem with rotation of items and without the guillotine cutting constraint. In order to solve the large-scale problem effectively and efficiently, we propose a simple but fast heuristic algorithm. It is shown that this heuristic outperforms the latest published algorithms for large-scale problem instances.

Keywords: Combinatorial optimization, heuristic, large-scale, stock-cutting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1375 Stock Portfolio Selection Using Chemical Reaction Optimization

Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li

Abstract:

Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.

Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
1374 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1373 Stock Market Integration Measurement: Investigation of Malaysia and Singapore Stock Markets

Authors: B. K. Yeoh, Z. Arsad, C. W. Hooy

Abstract:

This paper tests the level of market integration between Malaysia and Singapore stock markets with the world market. Kalman Filter (KF) methodology is used on the International Capital Asset Pricing Model (ICAPM) and the pricing errors estimated within the framework of ICAPM are used as a measure of market integration or segmentation. The advantage of the KF technique is that it allows for time-varying coefficients in estimating ICAPM and hence able to capture the varying degree of market integration. Empirical results show clear evidence of varying degree of market integration for both case of Malaysia and Singapore. Furthermore, the results show that the changes in the level of market integration are found to coincide with certain economic events that have taken placed. The findings certainly provide evidence on the practicability of the KF technique to estimate stock markets integration. In the comparison between Malaysia and Singapore stock market, the result shows that the trends of the market integration indices for Malaysia and Singapore look similar through time but the magnitude is notably different with the Malaysia stock market showing greater degree of market integration. Finally, significant evidence of varying degree of market integration shows the inappropriate use of OLS in estimating the level of market integration.

Keywords: ICAPM, Kalman filter, stock market integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1372 Valuing Patents on Market Reaction to Patent Infringement Litigations

Authors: Yu J. Chiu, Chia H. Yeh

Abstract:

Innovation is more important in any companies. However, it is not easy to measure the innovation performance correctly. Patent is one of measuring index nowadays. This paper wants to purpose an approach for valuing patents based on market reaction to patent infringement litigations. The interesting phenomenon is found from collection of patent infringement litigation events. That is if any patent litigation event occurs the stock value will follow changing. The plaintiffs- stock value raises some percentage. According to this interesting phenomenon, the relationship between patent litigation and stock value is tested and verified. And then, the stock value variation is used to deduce the infringed patents- value. The purpose of this study is providing another concept model to evaluate the infringed patents. This study can provide a decision assist system to help drafting patent litigation strategy and determine the technology value

Keywords: Patent valuation, infringement litigations, stock value, artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1371 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: Clustering, force-directed, graph drawing, stock investment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1370 Information Transmission between Large and Small Stocks in the Korean Stock Market

Authors: Sang Hoon Kang, Seong-Min Yoon

Abstract:

Little attention has been paid to information transmission between the portfolios of large stocks and small stocks in the Korean stock market. This study investigates the return and volatility transmission mechanisms between large and small stocks in the Korea Exchange (KRX). This study also explores whether bad news in the large stock market leads to a volatility of the small stock market that is larger than the good news volatility of the large stock market. By employing the Granger causality test, we found unidirectional return transmissions from the large stocks to medium and small stocks. This evidence indicates that pat information about the large stocks has a better ability to predict the returns of the medium and small stocks in the Korean stock market. Moreover, by using the asymmetric GARCH-BEKK model, we observed the unidirectional relationship of asymmetric volatility transmission from large stocks to the medium and small stocks. This finding suggests that volatility in the medium and small stocks following a negative shock in the large stocks is larger than that following a positive shock in the large stocks.

Keywords: Asymmetric GARCH-BEKK model, Asymmetric volatility transmission, Causality, Korean stock market, Spillover effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1369 Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States

Authors: A. Iqbal, N. Khalid, S. Rafiq

Abstract:

The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.

Keywords: Causality, Cointegration, India, Pakistan, Stock Markets, US.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152