Search results for: Data Centric Approach
8734 A Hybrid Recommendation System Based On Association Rules
Authors: Ahmed Mohammed K. Alsalama
Abstract:
Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose1 a hybrid framework recommendation system to be applied on two dimensional spaces (User × Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.
Keywords: Data Mining, Association Rules, Recommendation Systems, Hybrid Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39898733 Community Perceptions and Attitudes Regarding Wildlife Crime in South Africa
Authors: Louiza C. Duncker, Duarte Gonçalves
Abstract:
Wildlife crime is a complex problem with many interconnected facets, which are generally responded to in parts or fragments in efforts to “break down” the complexity into manageable components. However, fragmentation increases complexity as coherence and cooperation become diluted. A whole-of-society approach has been developed towards finding a common goal and integrated approach to preventing wildlife crime. As part of this development, research was conducted in rural communities adjacent to conservation areas in South Africa to define and comprehend the challenges faced by them, and to understand their perceptions of wildlife crime. The results of the research showed that the perceptions of community members varied - most were in favor of conservation and of protecting rhinos, only if they derive adequate benefit from it. Regardless of gender, income level, education level, or access to services, conservation was perceived to be good and bad by the same people. Even though people in the communities are poor, a willingness to stop rhino poaching does exist amongst them, but their perception of parks not caring about people triggered an attitude of not being willing to stop, prevent or report poaching. Understanding the nuances, the history, the interests and values of community members, and the drivers behind poaching mind-sets (intrinsic or driven by transnational organized crime) is imperative to create sustainable and resilient communities on multiple levels that make a substantial positive impact on people’s lives, but also conserve wildlife for posterity.
Keywords: Conservation, community perceptions, wildlife crime, rhino poaching, interest and value creation, whole-of-society approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18798732 Zero Inflated Strict Arcsine Regression Model
Authors: Y. N. Phang, E. F. Loh
Abstract:
Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.Keywords: Overdispersed count data, maximum likelihood estimation, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17558731 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13768730 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System
Authors: Saran Satsangi, Ashish Saini, Amit Saraswat
Abstract:
In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approachKeywords: Voltage control areas, reactive power management, K-means clustering algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23998729 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15558728 Delay Analysis of Sampled-Data Systems in Hard RTOS
Authors: A. M. Azad, M. Alam, C. M. Hussain
Abstract:
In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.Keywords: Multi-rate, PID, RT-Linux, Sampled-data, Servo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14448727 An Impulse-Momentum Approach to Swing-Up Control of Double Inverted Pendulum on a Cart
Authors: Thamer Ali Albahkali
Abstract:
The challenge in the swing-up problem of double inverted pendulum on a cart (DIPC) is to design a controller that bring all DIPC's states, especially the joint angles of the two links, into the region of attraction of the desired equilibrium. This paper proposes a new method to swing-up DIPC based on a series of restto- rest maneuvers of the first link about its vertically upright configuration while holding the cart fixed at the origin. The rest-torest maneuvers are designed such that each one results in a net gain in energy of the second link. This results in swing-up of DIPC-s configuration to the region of attraction of the desired equilibrium. A three-step algorithm is provided for swing-up control followed by the stabilization step. Simulation results with a comparison to an experimental work done in the literature are presented to demonstrate the efficacy of the approach.Keywords: Double Inverted pendulum, Impulse, momentum, underactuated
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19428726 Dynamics Simulation Approach in Analyzing Pension Expenditure
Authors: Hasimah Sapiri, Anton Abdulbasah Kamil, Razman Mat Tahar, Hanafi Tumin
Abstract:
Salary risk and demographic risk have been identified as main risks in analyzing pension expenditure particularly in Defined Benefit pension plan. Therefore, public pension plan in Malaysia is studied to analyze pension expenditure due to salary and demographic risk. Through the literature review and interview session with several officers in public sector, factors affecting pension expenditure are determined. Then, the inter-relationships between these factors are analyzed through causal loop diagram. The System Dynamics model is later developed using iThink software to show how demographic and salary changes affect the pension expenditure. Then, by using actual data, the impact of different policy scenarios on pension expenditure is analyzed. It is shown that dynamics simulation model of pension expenditure is useful to evaluate the impact of changes and policy decisions on risk particularly involving demographic and salary risk.Keywords: Demographic and Salary risk, Pension Expenditure, Public Policy, System Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27118725 Simultaneous Clustering and Feature Selection Method for Gene Expression Data
Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar
Abstract:
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.
Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19678724 Segmentation Free Nastalique Urdu OCR
Authors: Sobia T. Javed, Sarmad Hussain, Ameera Maqbool, Samia Asloob, Sehrish Jamil, Huma Moin
Abstract:
The electronically available Urdu data is in image form which is very difficult to process. Printed Urdu data is the root cause of problem. So for the rapid progress of Urdu language we need an OCR systems, which can help us to make Urdu data available for the common person. Research has been carried out for years to automata Arabic and Urdu script. But the biggest hurdle in the development of Urdu OCR is the challenge to recognize Nastalique Script which is taken as standard for writing Urdu language. Nastalique script is written diagonally with no fixed baseline which makes the script somewhat complex. Overlap is present not only in characters but in the ligatures as well. This paper proposes a method which allows successful recognition of Nastalique Script.Keywords: HMM, Image processing, Optical CharacterRecognition, Urdu OCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21598723 The Advent of Electronic Logbook Technology - Reducing Cost and Risk to Both Marine Resources and the Fishing Industry
Authors: Amos Barkai, Guy Meredith, Fatima Felaar, Zahrah Dantie, Dave de Buys
Abstract:
Fisheries management all around the world is hampered by the lack, or poor quality, of critical data on fish resources and fishing operations. The main reasons for the chronic inability to collect good quality data during fishing operations is the culture of secrecy common among fishers and the lack of modern data gathering technology onboard most fishing vessels. In response, OLRAC-SPS, a South African company, developed fisheries datalogging software (eLog in short) and named it Olrac. The Olrac eLog solution is capable of collecting, analysing, plotting, mapping, reporting, tracing and transmitting all data related to fishing operations. Olrac can be used by skippers, fleet/company managers, offshore mariculture farmers, scientists, observers, compliance inspectors and fisheries management authorities. The authors believe that using eLog onboard fishing vessels has the potential to revolutionise the entire process of data collection and reporting during fishing operations and, if properly deployed and utilised, could transform the entire commercial fleet to a provider of good quality data and forever change the way fish resources are managed. In addition it will make it possible to trace catches back to the actual individual fishing operation, to improve fishing efficiency and to dramatically improve control of fishing operations and enforcement of fishing regulations.Keywords: data management, electronic logbook (eLog), electronic reporting system (ERS), fisheries management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19768722 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor
Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman
Abstract:
This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.
Keywords: Lung tumor, Monte Carlo, polystyrene, elekta synergy, Monaco Planning System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12428721 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting
Authors: P. Subbaraj, V. Rajasekaran
Abstract:
This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.
Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16808720 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18988719 Environmental Performance of the United States Energy Sector: A DEA Model with Non-Discretionary Factors and Perfect Object
Authors: Alexander Y. Vaninsky
Abstract:
It is suggested to evaluate environmental performance of energy sector using Data Envelopment Analysis with nondiscretionary factors (DEA-ND) with relative indicators as inputs and outputs. The latter allows for comparison of the objects essentially different in size. Inclusion of non-discretionary factors serves separation of the indicators that are beyond the control of the objects. A virtual perfect object comprised of maximal outputs and minimal inputs was added to the group of actual ones. In this setting, explicit solution of the DEA-ND problem was obtained. Energy sector of the United States was analyzed using suggested approach for the period of 1980 – 2006 with expected values of economic indicators for 2030 used for forming the perfect object. It was obtained that environmental performance has been increasing steadily for the period from 7.7% through 50.0% but still remains well below the prospected levelKeywords: DEA with Non Discretionary Factors, Environmental Performance, Energy Sector, Explicit Solution, Perfect Object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15298718 Integrated Method for Detection of Unknown Steganographic Content
Authors: Magdalena Pejas
Abstract:
This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15648717 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8728716 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy
Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh
Abstract:
In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.Keywords: conditional entropy, multi-level thresholding, segmentation, two dimensional image histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29988715 Framework of Malaysian Knowledge Society: Results from Dual Data Approach
Authors: Norsiah Abdul Hamid, Halimah Badioze Zaman
Abstract:
This paper outlines the research conducted to propose na framework of 'Knowledge Society' (KS) in the Malaysian context. It is important to highlight that the emergence of KS is a result of the rapid growth in knowledge and information. However, the discussion of KS should not only be limited to the importance of knowledge, but a holistic KS is also determined by other imperative dimensions. This article discusses the results of a study conducted previously in Malaysia in order to identify the essential dimensions of KS, and consequently propose a KS framework in the Malaysian context. Two methods were employed, namely the Delphi technique and semi-structured interviews. The modified Delphi involved five rounds with ten experts, while the interviews were conducted with two prominent figures in Malaysia. The results support the proposed framework which contains seven major dimensions in order for Malaysia to become a KS in the future. The dimensions which are crucial for a holistic Malaysian KS are human capital, spirituality, economy, social, institutional, sustainability, and driven by the ICT.Keywords: Malaysia, Knowledge Society, Framework, Delphi Technique, Interview.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25218714 Spatial Variability of Brahmaputra River Flow Characteristics
Authors: Hemant Kumar
Abstract:
Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.
Keywords: Spatial analysis, change detection, aerosol, trend analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5428713 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.
Keywords: Green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8788712 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15638711 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22778710 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7508709 Groin Configurations: An Approach towards Stable Lowland Rivers with Improved Environmental Functions
Authors: M. Alauddin, T. Tsujimoto
Abstract:
Dynamicity of stream channels along with environmental concern is the key issue to address in lowland rivers like Jamuna in Bangladesh. The groins are important structures in attaining the improved river environment, but their effective functioning is not evident yet with the present design. Considering the present demands, an approach through modification of groin configurations is planned to function more natural way in dynamic lowland rivers. Four different configurations including the conventional one are considered in the study, and the changes in hydro- and morpho-dynamics affected by various structures are investigated in the laboratory. Results show that the modified combined groin favors gradual deceleration of flow towards the channel side and minimizes local scour noticeably. This favors stable regular channel and improve environmental functions.
Keywords: Lowland river, dynamicity, river environment, groin configuration, local scour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22438708 Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft
Authors: Cuitao Zhang, Xiongwen He
Abstract:
According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable.
Keywords: CCSDS standards, information flow, non-cable, spacecraft, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9408707 A Multiagent System for Distributed Systems Management
Authors: H. M. Kelash, H. M. Faheem, M. Amoon
Abstract:
The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.Keywords: distributed management, distributed systems, efficiency, mobile agent, multiagent, response time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20848706 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21988705 Transmission Pricing based on Voltage Angle Decomposition
Authors: M. Oloomi-Buygi, M. Reza Salehizadeh
Abstract:
In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.Keywords: Deregulation, Power electric markets, Transmission pricing methodologies, decoupled Newton-Raphson power flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663