Search results for: Data Management in Cloud
7137 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.
Authors: Georgia Pozoukidou
Abstract:
TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modeling.
Keywords: Calibration data requirements, land use models, land use planning, Metropolitan Planning Organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21017136 Information Support for Emergency Staff Processes and Effective Decisions
Authors: Tomáš Ludík, Josef Navrátil
Abstract:
Managing the emergency situations at the Emergency Staff requires a high co-operation between its members and their fast decision making. For these purpose it is necessary to prepare Emergency Staff members adequately. The aim of this paper is to describe the development of information support that focuses to emergency staff processes and effective decisions. The information support is based on the principles of process management, and Process Framework for Emergency Management was used during the development. The output is the information system that allows users to simulate an emergency situation, including effective decision making. The system also evaluates the progress of the emergency processes solving by quantitative and qualitative indicators. By using the simulator, a higher quality education of specialists can be achieved. Therefore, negative impacts resulting from arising emergency situations can be directly reduced.Keywords: Information Support for Emergency Staff, Effective Decisions, Process Framework, Simulation of Emergency Processes, System Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13217135 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: Data mining, K-means, road traffic accidents, Waze, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12167134 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15727133 Traditional Grocery Stores and Business Management in Bangkok
Authors: Suppara Charoenpoom
Abstract:
This paper was aimed to survey the level of awareness of traditional grocery stores in Bangkok in these categories: location, service quality, risk, shopping, worthwhile, shopping satisfaction, and future shopping intention. The paper was also aimed to survey factors influencing the decision to shop at traditional grocery stores in Bangkok in the future. The findings revealed that consumers had a high level of awareness of traditional grocery stores in Bangkok. Consumers were aware that the price was higher and it was riskier to buy goods and services at traditional grocery stores but they still had a high level of preference to patronage traditional grocery stores. This was due to the reasons that there was a high level of satisfaction from the factors of the friendliness of the owner, the ability to negotiate the price, the ability to buy on credit, free delivery, and the enjoyment to meet with other customers in the same neighborhood.Keywords: Business Management, Thai Economy, Traditional Grocery Store.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25307132 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant
Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih
Abstract:
ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.
Keywords: PWR, ALOHA, habitability, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7427131 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66347130 Appraisal of Humanitarian Supply Chain Risks Using Best-Worst Method
Authors: Ali Mohaghar, Iman Ghasemian Sahebi, Alireza Arab
Abstract:
In the last decades, increasing in human and natural disaster occurrence had very irreparable effects on human life. Hence, one of the important issues in humanitarian supply chain management is identifying and prioritizing the different risks and finding suitable solutions for encountering them at the time of disaster occurrence. This study is an attempt to provide a comprehensive review of humanitarian supply chain risks in a case study of Tehran Red Crescent Societies. For this purpose, Best-Worst method (BWM) has been used for analyzing the risks of the humanitarian supply chain. 22 risks of the humanitarian supply chain were identified based on the literature and interviews with four experts. According to BWM method, the importance of each risk was calculated. The findings showed that culture contexts, little awareness of people, and poor education system are the most important humanitarian supply chain risks. This research provides a useful guideline for managers so that they can benefit from the results to prioritize their solutions.Keywords: Best worst method, humanitarian logistics, humanitarian supply chain, risk management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23427129 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.
Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14357128 Distributed Splay Suffix Arrays: A New Structure for Distributed String Search
Authors: Tu Kun, Gu Nai-jie, Bi Kun, Liu Gang, Dong Wan-li
Abstract:
As a structure for processing string problem, suffix array is certainly widely-known and extensively-studied. But if the string access pattern follows the “90/10" rule, suffix array can not take advantage of the fact that we often find something that we have just found. Although the splay tree is an efficient data structure for small documents when the access pattern follows the “90/10" rule, it requires many structures and an excessive amount of pointer manipulations for efficiently processing and searching large documents. In this paper, we propose a new and conceptually powerful data structure, called splay suffix arrays (SSA), for string search. This data structure combines the features of splay tree and suffix arrays into a new approach which is suitable to implementation on both conventional and clustered computers.Keywords: suffix arrays, splay tree, string search, distributedalgorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17777127 Life Experiences are Important Factors of Making Stronger SOC (Sense of Coherence) on the Workers in Tsukuba Research Park City (TRPC)
Authors: Shinichiro Sasahara, Yusuke Tomotsune, Yuichi Ohi, Shun Suzuki, Akihiro Seki, Junko Sakano, Yoshihiko Yamazaki, Ichiyo Matsuzaki
Abstract:
Via a large scale cross-sectional study among Japanese white color workers, the authors aimed to elucidate: (1) the distributions of Sense of Coherence (SOC), which reflect stress coping abilities, (2) the distributions of Life experience; (3) and the association between SOC and Life experience. Anonymous self-administered questionnaires were sent to 15,891 in 2001 and 21,922 in 2011 employees at educational and research institutions in Tsukuba Research Park City. A total of 5,868 (36.9%) and 9,528 (43.5%) respectively workers completed and returned the questionnaire; 5,715 and 9,515 respectively workers without missing data were analyzed. SOC scale scores differed by gender, age, and other demographic features in both study years. Among the life experiences, workers who have got over parenting or management position were higher SOC scale scores adjusted by gender and age. The life experiences that workers have got over could develop their stronger SOC in their life course.
Keywords: field study, life experience, mental health, SOC (sense of coherence)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15387126 Proportion and Factors Associated with Presumptive Tuberculosis among Suspected Pediatric TB Patients
Authors: Naima Nur, Safa Islam, Saeema Islam, Md. Faridul Alam
Abstract:
The study addresses the increasing challenge of pediatric presumptive tuberculosis, emphasizing the need to understand the factors associated with it. The research aims to determine the proportion of presumptive TB and factors associated with it among suspected pediatric tuberculosis patients. A cross-sectional study was conducted at ICDDR-Bangladesh, collecting specimens from suspected pediatric patients and using logistic regression for data analysis. The study found a high proportion of presumptive TB (85.7%) but no statistically significant differences between presumptive and non-presumptive TB. Theoretical importance of the study highlights the importance of identifying factors associated with presumptive TB for better control and management strategies. Specimens were collected from 84 suspected pediatric patients diagnosed with TB based on clinical symptoms/radiological findings. Microbiological tests like smear-microscopy, culture, and GeneXpert were used to isolate presumptive TB and confirmed TB. The proportion of presumptive TB was 85.7% among suspected pediatric TB patients. Among various factors that were not found to be associated with the presumptive TB. The study concludes that despite a high proportion of presumptive TB, no significant differences were found between presumptive and non-presumptive TB cases.
Keywords: Presumptive tuberculosis, confirmed tuberculosis, patient's characteristics, diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867125 Dimension Free Rigid Point Set Registration in Linear Time
Authors: Jianqin Qu
Abstract:
This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.Keywords: Covariant point, point matching, dimension free, rigid registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6837124 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: Data transformation, functional programming, information server, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7537123 Formal Verification of Cache System Using a Novel Cache Memory Model
Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang
Abstract:
Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.
Keywords: Cache system, formal verification, novel model, System on Chip (SoC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22997122 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9947121 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.
Keywords: Proxy signature, fault tolerance, RSA, key agreement protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14857120 Hybrid Intelligent Intrusion Detection System
Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed
Abstract:
Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21327119 Transforming Health Information from Manual to Digital (Electronic) World–Reference and Guide
Authors: S. Karthikeyan, Naveen Bindra
Abstract:
Introduction: To update ourselves and understand the concept of latest electronic formats available for Health care providers and how it could be used and developed as per standards. The idea is to correlate between the patients Manual Medical Records keeping and maintaining patients Electronic Information in a Health care setup in this world. Furthermore, this stands with adapting to the right technology depending upon the organization and improve our quality and quantity of Healthcare providing skills. Objective: The concept and theory is to explain the terms of Electronic Medical Record (EMR), Electronic Health Record (EHR) and Personal Health Record (PHR) and selecting the best technical among the available Electronic sources and software before implementing. It is to guide and make sure the technology used by the end users without any doubts and difficulties. The idea is to evaluate is to admire the uses and barriers of EMR-EHR-PHR. Aim and Scope: The target is to achieve the health care providers like Physicians, Nurses, Therapists, Medical Bill reimbursements, Insurances and Government to assess the patient’s information on easy and systematic manner without diluting the confidentiality of patient’s information. Method: Health Information Technology can be implemented with the help of Organisations providing with legal guidelines and help to stand by the health care provider. The main objective is to select the correct embedded and affordable database management software and generating large-scale data. The parallel need is to know how the latest software available in the market. Conclusion: The question lies here is implementing the Electronic information system with healthcare providers and organization. The clinicians are the main users of the technology and manage us to “go paperless”. The fact is that day today changing technologically is very sound and up to date. Basically, the idea is to tell how to store the data electronically safe and secure. All three exemplifies the fact that an electronic format has its own benefit as well as barriers.
Keywords: Medical records, digital records, health information, electronic record system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13617118 Impact Assessment of Lean Practices on Social Sustainability Indicators: An Approach Using ISM Method
Authors: Aline F. Marcon, Eduardo F. da Silva, Marina Bouzon
Abstract:
The impact of lean management on environmental sustainability is the research line that receives the most attention from academicians. Therefore, the social dimension of sustainable development has so far received less attention. This paper aims to evaluate the impact of intra-plant lean manufacturing practices on social sustainability indicators extracted from the Global Reporting Initiative (GRI) parameters. The method is two-phased, including MCDM approach to uncover the most relevant practices regarding social performance and Interpretive Structural Modeling (ISM) method to reveal the structural relationship among lean practices. Professionals from the academic and industrial fields answered the questionnaires. From the results of this paper, it is possible to verify that practices such as “Safety Improvement Programs”, “Total Quality Management” and “Cross-functional Workforce” are the ones which have the most positive influence on the set of GRI social indicators.
Keywords: Indicators, ISM, lean, social, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7997117 An Efficient and Generic Hybrid Framework for High Dimensional Data Clustering
Authors: Dharmveer Singh Rajput , P. K. Singh, Mahua Bhattacharya
Abstract:
Clustering in high dimensional space is a difficult problem which is recurrent in many fields of science and engineering, e.g., bioinformatics, image processing, pattern reorganization and data mining. In high dimensional space some of the dimensions are likely to be irrelevant, thus hiding the possible clustering. In very high dimensions it is common for all the objects in a dataset to be nearly equidistant from each other, completely masking the clusters. Hence, performance of the clustering algorithm decreases. In this paper, we propose an algorithmic framework which combines the (reduct) concept of rough set theory with the k-means algorithm to remove the irrelevant dimensions in a high dimensional space and obtain appropriate clusters. Our experiment on test data shows that this framework increases efficiency of the clustering process and accuracy of the results.Keywords: High dimensional clustering, sub-space, k-means, rough set, discernibility matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19507116 Value Stream Oriented Inventory Management
Authors: GuentherSchuh, Till Potente, SaschaFuchs, Annika Hauptvogel, Tobias Welter
Abstract:
Producing companies aspire to high delivery availability despite appearing disruptions. To ensure high delivery availability safety stocksare required. Howeversafety stock leads to additional capital commitment and compensates disruptions instead of solving the reasons.The intention is to increase the stability in production by configuring the production planning and control systematically. Thus the safety stock can be reduced. The largest proportion of inventory in producing companies is caused by batch inventory, schedule deviations and variability of demand rates.These reasons for high inventory levels can be reduced by configuring the production planning and control specifically. Hence the inventory level can be reduced. This is enabled by synchronizing the lot size straightening the demand as well as optimizing the releasing order, sequencing and capacity control.Keywords: inventory level, inventory management, production planning and control, safety stock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16237115 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University
Authors: Siriporn Poolsuwan, Kanyarat Bussaban
Abstract:
This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization
Keywords: Online Database, User Behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16247114 Hospitality Management to Welcome Foreign Guests in the Japanese Lodging Industry
Authors: Shunichiro Morishita
Abstract:
This study examines the factors for attracting foreign guests in the Japanese lodging industry and discusses some measures taken for accepting foreign guests. It reviews three different accommodation providers acclaimed highly by foreign guests, Yamashiroya, Sawanoya and Fuji-Hakone Guest House, and identifies their characteristics. The common points for attracting foreign guests were: 1) making the best use of the old facilities, 2) multilingual signs, guidance and websites, 3) necessary and sufficient communication in English, 4) events and opportunities to experience Japanese culture, 5) omotenashi, warm and homely Japanese hospitality. These findings indicate that foreign guests’ dissatisfaction level can be decreased through internationalization utilizing ICT and by offering multilingual support. On the other hand, their satisfaction level can be increased by encouraging interaction with other guests and local Japanese people, providing events and opportunities to experience Japanese culture and omotenashi, home-style Japanese hospitality.Keywords: Hospitality management, foreign guests, Japanese lodging industry, Omotenashi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9957113 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern
Authors: Rupesh K. Gopal, Saroj K. Meher
Abstract:
In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28137112 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis
Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma
Abstract:
A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.
Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727111 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.
Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23367110 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network
Authors: C. Rajan, K. Geetha, S. Geetha
Abstract:
The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11897109 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32307108 Improving the Safety Performance of Workers by Assessing the Impact of Safety Culture on Workers’ Safety Behaviour in Nigeria Oil and Gas Industry: A Pilot Study in the Niger Delta Region
Authors: Efua Ehiaguina, Haruna Moda
Abstract:
Interest in the development of appropriate safety culture in the oil and gas industry has taken centre stage among stakeholders in the industry. Human behaviour has been identified as a major contributor to occupational accidents, where abnormal activities associated with safety management are taken as normal behaviour. Poor safety culture is one of the major factors that influence employee’s safety behaviour at work, which may consequently result in injuries and accidents and strengthening such a culture can improve workers safety performance. Nigeria oil and gas industry has contributed to the growth and development of the country in diverse ways. However, in terms of safety and health of workers, this industry is a dangerous place to work as workers are often exposed to occupational safety and health hazard. To ascertain the impact of employees’ safety and how it impacts health and safety compliance within the local industry, online safety culture survey targeting frontline workers within the industry was administered covering major subjects that include; perception of management commitment and style of leadership; safety communication method and its resultant impact on employees’ behaviour; employee safety commitment and training needs. The preliminary result revealed that 54% of the participants feel that there is a lack of motivation from the management to work safely. In addition, 55% of participants revealed that employers place more emphasis on work delivery over employee’s safety on the installation. It is expected that the study outcome will provide measures aimed at strengthening and sustaining safety culture in the Nigerian oil and gas industry.
Keywords: Oil and gas safety, safety behaviour, safety culture, safety compliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299