Search results for: review mining.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1563

Search results for: review mining.

1383 Investigating Crime Hotspot Places and their Implication to Urban Environmental Design: A Geographic Visualization and Data Mining Approach

Authors: Donna R. Tabangin, Jacqueline C. Flores, Nelson F. Emperador

Abstract:

Information is power. Geographical information is an emerging science that is advancing the development of knowledge to further help in the understanding of the relationship of “place" with other disciplines such as crime. The researchers used crime data for the years 2004 to 2007 from the Baguio City Police Office to determine the incidence and actual locations of crime hotspots. Combined qualitative and quantitative research methodology was employed through extensive fieldwork and observation, geographic visualization with Geographic Information Systems (GIS) and Global Positioning Systems (GPS), and data mining. The paper discusses emerging geographic visualization and data mining tools and methodologies that can be used to generate baseline data for environmental initiatives such as urban renewal and rejuvenation. The study was able to demonstrate that crime hotspots can be computed and were seen to be occurring to some select places in the Central Business District (CBD) of Baguio City. It was observed that some characteristics of the hotspot places- physical design and milieu may play an important role in creating opportunities for crime. A list of these environmental attributes was generated. This derived information may be used to guide the design or redesign of the urban environment of the City to be able to reduce crime and at the same time improve it physically.

Keywords: Crime mapping, data mining, environmental design, geographic visualization, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
1382 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1381 Discovering Complex Regularities by Adaptive Self Organizing Classification

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
1380 A Heuristics Approach for Fast Detecting Suspicious Money Laundering Cases in an Investment Bank

Authors: Nhien-An Le-Khac, Sammer Markos, M-Tahar Kechadi

Abstract:

Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most international financial institutions have been implementing anti-money laundering solutions (AML) to fight investment fraud. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project for the purpose of developing a new solution for the AML Units in an international investment bank, we proposed a data mining-based solution for AML. In this paper, we present a heuristics approach to improve the performance for this solution. We also show some preliminary results associated with this method on analysing transaction datasets.

Keywords: data mining, anti money laundering, clustering, heuristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3585
1379 A Study on Finding Similar Document with Multiple Categories

Authors: R. Saraçoğlu, N. Allahverdi

Abstract:

Searching similar documents and document management subjects have important place in text mining. One of the most important parts of similar document research studies is the process of classifying or clustering the documents. In this study, a similar document search approach that includes discussion of out the case of belonging to multiple categories (multiple categories problem) has been carried. The proposed method that based on Fuzzy Similarity Classification (FSC) has been compared with Rocchio algorithm and naive Bayes method which are widely used in text mining. Empirical results show that the proposed method is quite successful and can be applied effectively. For the second stage, multiple categories vector method based on information of categories regarding to frequency of being seen together has been used. Empirical results show that achievement is increased almost two times, when proposed method is compared with classical approach.

Keywords: Document similarity, Fuzzy classification, Multiple categories, Text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1378 Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m2 (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS+ software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26 mg.kg-1) in comparison to control area (Pb: 9.42±0.17, Cd: 131.71±15.77 mg.kg-1). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary.

Keywords: Traditional coal mining, heavy metals, pollution indicators, geostatistics, caspian forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
1377 Parallel and Distributed Mining of Association Rule on Knowledge Grid

Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran

Abstract:

In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.

Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1376 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1375 Analysis of Sequence Moves in Successful Chess Openings Using Data Mining with Association Rules

Authors: R.M.Rani

Abstract:

Chess is one of the indoor games, which improves the level of human confidence, concentration, planning skills and knowledge. The main objective of this paper is to help the chess players to improve their chess openings using data mining techniques. Budding Chess Players usually do practices by analyzing various existing openings. When they analyze and correlate thousands of openings it becomes tedious and complex for them. The work done in this paper is to analyze the best lines of Blackmar- Diemer Gambit(BDG) which opens with White D4... using data mining analysis. It is carried out on the collection of winning games by applying association rules. The first step of this analysis is assigning variables to each different sequence moves. In the second step, the sequence association rules were generated to calculate support and confidence factor which help us to find the best subsequence chess moves that may lead to winning position.

Keywords: Blackmar-Diemer Gambit(BDG), Confidence, sequence Association Rules, Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3091
1374 Service-Oriented Enterprise Architecture (SoEA) Adoption and Maturity Measurement Model: A Systematic Literature Review

Authors: Nur Azaliah Abu Bakar, Harihodin Selamat, Mohd Nazri Kama

Abstract:

This article provides a systematic review of existing research related to the Service-oriented Enterprise Architecture (SoEA) adoption and maturity measurement model. The review’s main goals are to support research; to facilitate other researchers’ search for relevant studies; and to propose areas for future studies within this area. In addition, this article provides useful information on SoEA adoption issues and its related maturity model, based on research-based knowledge. The review results suggest that motives, critical success factors (CSFs), implementation status, and benefits are the most frequently studied areas, and that each of these areas would benefit from further exposure.

Keywords: Systematic Literature Review, Service-oriented Architecture, Adoption, Maturity Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951
1373 Assessment of Psychomotor Development of Preschool Children: A Review of Eight Psychomotor Developmental Tools

Authors: Viola Hubačová Pirová

Abstract:

The assessment of psychomotor development allows us to identify children with motor delays, helps us to monitor progress in time and prepare suitable intervention programs. The foundation of psychomotor development lies in pre-school age and is crucial for child´s further cognitive and social development. Many assessment tools of psychomotor development have been developed over the years. Some of them are easy screening tools; others are more complex and sophisticated. The purpose of this review is to describe the history of psychomotor assessment, specify preschool children´s psychomotor evaluation and review eight psychomotor development assessment tools for preschool children (Denver II., DEMOST-PRE, TGMD -2/3, BOT-2, MABC-2, PDMS-2, KTK, MOT 4-6). The selection of test depends on purpose and context in which is the assessment planned.

Keywords: Assessment of psychomotor development, preschool children, psychomotor development, review of assessment tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
1372 An Educational Data Mining System for Advising Higher Education Students

Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy

Abstract:

Educational  data mining  is  a  specific  data   mining field applied to data originating from educational environments, it relies on different  approaches to discover hidden knowledge  from  the  available   data. Among these approaches are   machine   learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.

In  our  research, we propose  a “Student  Advisory  Framework” that  utilizes  classification  and  clustering  to  build  an  intelligent system. This system can be used to provide pieces of consultations to a first year  university  student to  pursue a  certain   education   track   where  he/she  will  likely  succeed  in, aiming  to  decrease   the  high  rate   of  academic  failure   among these  students.  A real case study  in Cairo  Higher  Institute  for Engineering, Computer  Science  and  Management  is  presented using  real  dataset   collected  from  2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.

Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5213
1371 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: Decision tree, classification, data mining, scholarship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
1370 Development of a Technology Assessment Model by Patents and Customers' Review Data

Authors: Kisik Song, Sungjoo Lee

Abstract:

Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.

Keywords: Technology assessment, patents, citation information, opinion mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
1369 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: Text mining, Twitter, topic model, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
1368 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: Semantic links, data mining, linked data, SKOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
1367 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making

Authors: Nevena Stolba, A Min Tjoa

Abstract:

Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.

Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811
1366 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
1365 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain

Abstract:

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2922
1364 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3849
1363 Customer Need Type Classification Model using Data Mining Techniques for Recommender Systems

Authors: Kyoung-jae Kim

Abstract:

Recommender systems are usually regarded as an important marketing tool in the e-commerce. They use important information about users to facilitate accurate recommendation. The information includes user context such as location, time and interest for personalization of mobile users. We can easily collect information about location and time because mobile devices communicate with the base station of the service provider. However, information about user interest can-t be easily collected because user interest can not be captured automatically without user-s approval process. User interest usually represented as a need. In this study, we classify needs into two types according to prior research. This study investigates the usefulness of data mining techniques for classifying user need type for recommendation systems. We employ several data mining techniques including artificial neural networks, decision trees, case-based reasoning, and multivariate discriminant analysis. Experimental results show that CHAID algorithm outperforms other models for classifying user need type. This study performs McNemar test to examine the statistical significance of the differences of classification results. The results of McNemar test also show that CHAID performs better than the other models with statistical significance.

Keywords: Customer need type, Data mining techniques, Recommender system, Personalization, Mobile user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
1362 Web Traffic Mining using Neural Networks

Authors: Farhad F. Yusifov

Abstract:

With the explosive growth of data available on the Internet, personalization of this information space become a necessity. At present time with the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge and information to the end users. Discovering hidden and meaningful information about Web users usage patterns is critical to determine effective marketing strategies to optimize the Web server usage for accommodating future growth. The task of mining useful information becomes more challenging when the Web traffic volume is enormous and keeps on growing. In this paper, we propose a intelligent model to discover and analyze useful knowledge from the available Web log data.

Keywords: Clustering, Self organizing map, Web log files, Web traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
1361 Effects of Repetitive Strain/Stress Injury on the Human Body

Authors: Mohd Abdullah

Abstract:

This review describes some of the effects of repetitive strain/stress injury (RSI) on the human body especially among computer professionals today that spend extended hours of prolonged sitting in front of a computer day in and day out. The review briefly introduces the main factors that contribute to an increase of RSI among such computer professionals. The review briefly discusses how the human spinal column and knees are mainly affected by the onset of RSI resulting in poor posture. The root and secondary causes and effects of RSI are reviewed. The importance and value of the various breathing techniques are reviewed in an attempt to alleviate some of the effects of RSI. The review concludes with a small sample of suggested office stretches and poses geared towards at reducing RSI follows in this review. Readers will learn about the effects of RSI, as well as ways to cope with it. A better understanding of coping strategies may lead to well-being and a healthier overall lifestyle. Ultimately, the investment of time to connect with oneself with the poses and the power of the breath would promote a well-being that is overall healthier thus resulting in a better ability to cope/manage life stresses.

Keywords: Health, wellness, repetitive, chairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
1360 Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study

Authors: Mauro Giacomini, Stefania Bertone, Carlo Mansi, Pietro Dulbecco, Vincenzo Savarino

Abstract:

The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.

Keywords: Cluster analysis, constipation, data mining, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
1359 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
1358 Probabilistic Approach as a Method Used in the Solution of Engineering Design for Biomechanics and Mining

Authors: Karel Frydrýšek

Abstract:

This paper focuses on the probabilistic numerical solution of the problems in biomechanics and mining. Applications of Simulation-Based Reliability Assessment (SBRA) Method are presented in the solution of designing of the external fixators applied in traumatology and orthopaedics (these fixators can be applied for the treatment of open and unstable fractures etc.) and in the solution of a hard rock (ore) disintegration process (i.e. the bit moves into the ore and subsequently disintegrates it, the results are compared with experiments, new design of excavation tool is proposed.

Keywords: probabilistic approach, engineering design, traumatology, rock mechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1357 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application

Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman

Abstract:

Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.

Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4481
1356 STEP-NC-Compliant Systems for the Manufacturing Environment

Authors: Yusri Yusof

Abstract:

The paper provides a literature review of the STEPNC compliant research around the world. The first part of this paper focuses on projects based on STEP compliance followed by research and development in this area based on machining operations. Review the literature relating to relevant STEP standards and application in the area of turning centers. This research will review the various research work, carried out from the evolution of STEP-NC of the CNC manufacturing activities. The paper concludes with discussion of the applications in this particular area.

Keywords: STEP-NC, CNC, Machining and Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
1355 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes

Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele

Abstract:

Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.

Keywords: Health informatics, data mining, nutritional and health databases, nutritional and chronical databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1354 Attribute Selection Methods Comparison for Classification of Diffuse Large B-Cell Lymphoma

Authors: Helyane Bronoski Borges, Júlio Cesar Nievola

Abstract:

The most important subtype of non-Hodgkin-s lymphoma is the Diffuse Large B-Cell Lymphoma. Approximately 40% of the patients suffering from it respond well to therapy, whereas the remainder needs a more aggressive treatment, in order to better their chances of survival. Data Mining techniques have helped to identify the class of the lymphoma in an efficient manner. Despite that, thousands of genes should be processed to obtain the results. This paper presents a comparison of the use of various attribute selection methods aiming to reduce the number of genes to be searched, looking for a more effective procedure as a whole.

Keywords: Attribute selection, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417