Search results for: relay selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1097

Search results for: relay selection

977 Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions

Authors: Mohsen Pirdashti, Arezou Ghadi, Mehrdad Mohammadi, Gholamreza Shojatalab

Abstract:

Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.

Keywords: Chemical Engineering, R&D Project, MCDM, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4088
976 A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks

Authors: Jong-Moon Chung, Hyung-Weon Cho, Ki-Yong Jin, Min-Hee Cho

Abstract:

In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.

Keywords: Co-Channel Interference, Dynamic TDD, MobileMultihop Reply, Cellular Network, Time Division Multiple Access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
975 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

Authors: T. S. Chou, K. K. Yen, J. Luo

Abstract:

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.

Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
974 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
973 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
972 On the Performance of Information Criteria in Latent Segment Models

Authors: Jaime R. S. Fonseca

Abstract:

Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.

Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
971 The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist student learning in a pervasive way. For example, the idea of using mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. While working on the development of three heterogeneous mobile apps, we ran into numerous challenges. Both the traditional waterfall model and the more modern agile methodologies failed in practice. The waterfall model emphasizes the planning of the duration for each phase. When the duration of each phase is not consistent with the availability of developers, the waterfall model cannot be employed. When applying Agile Methodologies, we cannot maintain the high frequency of the iterative development review process, known as ‘sprints’. In this paper, we discuss the challenges and solutions. We propose a hybrid model known as the Relay Race Methodology to reflect the concept of racing and relaying during the process of software development in practice. Based on the development project, we observe that the modeling of the relay race transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the software development model. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future works are presented.

Keywords: Agile methods, mobile apps, software process model, waterfall model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
970 Performance Analysis of Software Reliability Models using Matrix Method

Authors: RajPal Garg, Kapil Sharma, Rajive Kumar, R. K. Garg

Abstract:

This paper presents a computational methodology based on matrix operations for a computer based solution to the problem of performance analysis of software reliability models (SRMs). A set of seven comparison criteria have been formulated to rank various non-homogenous Poisson process software reliability models proposed during the past 30 years to estimate software reliability measures such as the number of remaining faults, software failure rate, and software reliability. Selection of optimal SRM for use in a particular case has been an area of interest for researchers in the field of software reliability. Tools and techniques for software reliability model selection found in the literature cannot be used with high level of confidence as they use a limited number of model selection criteria. A real data set of middle size software project from published papers has been used for demonstration of matrix method. The result of this study will be a ranking of SRMs based on the Permanent value of the criteria matrix formed for each model based on the comparison criteria. The software reliability model with highest value of the Permanent is ranked at number – 1 and so on.

Keywords: Matrix method, Model ranking, Model selection, Model selection criteria, Software reliability models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
969 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez

Abstract:

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Keywords: Feature Selection Stability, Spectral data, Data visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
968 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
967 A Hybridized Competency-Based Teacher Candidate Selection System

Authors: R. Ramli, M. I. Ghazali, H. Ibrahim, M. M. Kasim, F. M. Kamal, S.Vikneswari

Abstract:

Teachers form the backbone of any educational system, hence selecting qualified candidates is very crucial. In Malaysia, the decision making in the selection process involves a few stages: Initial filtering through academic achievement, taking entry examination and going through an interview session. The last stage is the most challenging since it highly depends on human judgment. Therefore, this study sought to identify the selection criteria for teacher candidates that form the basis for an efficient multi-criteria teacher-candidate selection model for that last stage. The relevant criteria were determined from the literature and also based on expert input that is those who were involved in interviewing teacher candidates from a public university offering the formal training program. There are three main competency criteria that were identified which are content of knowledge, communication skills and personality. Further, each main criterion was divided into a few subcriteria. The Analytical Hierarchy Process (AHP) technique was employed to allocate weights for the criteria and later, integrated a Simple Weighted Average (SWA) scoring approach to develop the selection model. Subsequently, a web-based Decision Support System was developed to assist in the process of selecting the qualified teacher candidates. The Teacher-Candidate Selection (TeCaS) system is able to assist the panel of interviewers during the selection process which involves a large amount of complex qualitative judgments.

Keywords: Analytic Hierarchy Process, Simple Weighted Average, Decision Support System, Multi-criteria decision making problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
966 Investigation Wintering And Breeding Habitat Selection by Asiatic Houbara Bustard (Chlamydotis macqueenii ) In Central Steppe of Iran

Authors: S. Aghainajafi Zadeh, M.R. Hemami., F. Heydari

Abstract:

Asiatic Houbara ( Chlamydotis macqueenii ) is a flagship and vulnerable species. In-situ conservation of this threatened species demands for knowledge of its habitat selection. The aim of this study was to determine habitat variables influencing birds wintering and breeding selection in semi- arid central Iran. Habitat features of the detected nest and pellet sites were compared with paired and random plots by quantifying a number of habitat variables. In wintering habitat use at micro scale houbara selected sites where vegetation cover was significantly lower compard to control sites( p< 0.001). Areas with low number of larger plant species (p=0.03) that were not too close to a vegetation patch(p<0.001) were selected for breeding habitat.

Keywords: Asiatic houbara bustard, Habitat selection, Nest, pellet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
965 Gene Selection Guided by Feature Interdependence

Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel

Abstract:

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.

Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
964 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
963 Logistics Information and Customer Service

Authors: Š. Čemerková, M. Wilczková

Abstract:

The paper deals with the importance of information flow for providing of defined level of customer service in the firms. Setting of the criteria for the selection and implementation of logistics information system is a prerequisite for ensuring of the flow of information in firms. The decision on the selection and implementation of logistics information system is linked to the investment costs and operating costs, which are included in the total logistics costs. The article also deals with the conclusions of the research focused on the logistics information system selection in companies in the Czech Republic.

Keywords: Customer service, information system, logistics, research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
962 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection

Authors: Ethan Shafer, Timothy Graziano, Jay Fisher

Abstract:

This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.

Keywords: STEM major, STEM, pedagogy, digital literacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211
961 Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach

Authors: Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAsghari

Abstract:

This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.

Keywords: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
960 A Feasible Path Selection QoS Routing Algorithm with two Constraints in Packet Switched Networks

Authors: P.S.Prakash, S.Selvan

Abstract:

Over the past several years, there has been a considerable amount of research within the field of Quality of Service (QoS) support for distributed multimedia systems. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining a feasible path that satisfies a number of QoS constraints. The problem of finding a feasible path is NPComplete if number of constraints is more than two and cannot be exactly solved in polynomial time. We proposed Feasible Path Selection Algorithm (FPSA) that addresses issues with pertain to finding a feasible path subject to delay and cost constraints and it offers higher success rate in finding feasible paths.

Keywords: feasible path, multiple constraints, path selection, QoS routing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
959 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques

Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa

Abstract:

In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.

Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
958 Genetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines

Authors: A. Perolini

Abstract:

Feature and model selection are in the center of attention of many researches because of their impact on classifiers- performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parameters- values. Although GA-SVM is an effective method it is computationally expensive, thus a rough method can be considered. The paper investigates a joined approach of Genetic Algorithm and kernel matrix criteria to perform simultaneously feature and model selection for SVM classification problem. The purpose of this research is to improve the classification performance of SVM through an efficient approach, the Kernel Matrix Genetic Algorithm method (KMGA).

Keywords: Feature and model selection, Genetic Algorithms, Support Vector Machines, kernel matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
957 Residential Self-Selection and Its Effects on Urban Commute Travels in Iranian Cities Compared to US, UK, and Germany

Authors: Houshmand E. Masoumi

Abstract:

Residential self-selection has gained increasing attention in the Western travel behavior research during the past decade. Many studies in the US, UK, and Germany conclude that the role of individuals’ residential location choice on commute travel behavior is more important than that of the built environment or at least it has considerable effects. However the effectiveness of location choice in many countries and cultures like Iran is unclear. This study examines the self-selections in two neighborhoods in Tehran. As a part of a research about the influences of land use on travel behavior information about people’s location preferences was collected by direct questioning. The findings show that the main reasons for selecting the location of residential units are related to socio-economic factors such as rise of house price and affordability of house prices. Transportation has little impacts on location decisions. Moreover, residential self-selection accounts for only 3 to 7.5 percent of the pedestrian, PT, and car trips.

Keywords: Residential self-selection, Tehran, travel behavior, urban transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
956 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm

Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy

Abstract:

There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.

Keywords: Candidate cultivar, edible seed pumpkin, morphologic parameters, selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
955 Facility Location Selection using Preference Programming

Authors: C. Ardil

Abstract:

This paper presents preference programming technique based multiple criteria decision making analysis for selecting a facility location for a new organization or expansion of an existing facility which is of vital importance for a decision support system and strategic planning process. The implementation of decision support systems is considered crucial to sustain competitive advantage and profitability persistence in turbulent environment. As an effective strategic management and decision making is necessary, multiple criteria decision making analysis supports the decision makers to formulate and implement the right strategy. The investment cost associated with acquiring the property and facility construction makes the facility location selection problem a long-term strategic investment decision, which rationalize the best location selection which results in higher economic benefits through increased productivity and optimal distribution network. Selecting the proper facility location from a given set of alternatives is a difficult task, as many potential qualitative and quantitative multiple conflicting criteria are to be considered. This paper solves a facility location selection problem using preference programming, which is an effective multiple criteria decision making analysis tool applied to deal with complex decision problems in the operational research environment. The ranking results of preference programming are compared with WSM, TOPSIS and VIKOR methods.

Keywords: Facility Location Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, Preference Programming, Location Selection, WSM, TOPSIS, VIKOR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
954 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.

Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
953 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine

Abstract:

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
952 Plant Location Selection by Using a Three-Step Methodology: Delphi-AHP-VIKOR

Authors: B. Vahdani, S. M. Mousavi, R. Tavakkoli-Moghaddam

Abstract:

Nowadays, the plant location selection has a critical impact on the performance of numerous companies. In this paper, a methodology is presented to solve this problem. The three decision making methods, namely Delphi, AHP and improved VIKOR, are hybridized in order to make the best use of information available based on the decision makers or experts. In this respect, the aim of using Delphi is to select the most influential criteria by a few decision makers. The AHP is utilized to give weights of the selected criteria. Finally, the improved VIKOR method is applied to rank alternatives. At the end of paper, an application example demonstrates the applicability of the proposed methodology.

Keywords: Decision making, Plant location selection, Delphi, AHP, Improved VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3976
951 An Economical Operation Analysis Optimization Model for Heavy Equipment Selection

Authors: A. Jrade, N. Markiz, N. Albelwi

Abstract:

Optimizing equipment selection in heavy earthwork operations is a critical key in the success of any construction project. The objective of this research incentive was geared towards developing a computer model to assist contractors and construction managers in estimating the cost of heavy earthwork operations. Economical operation analysis was conducted for an equipment fleet taking into consideration the owning and operating costs involved in earthwork operations. The model is being developed in a Microsoft environment and is capable of being integrated with other estimating and optimization models. In this study, Caterpillar® Performance Handbook [5] was the main resource used to obtain specifications of selected equipment. The implementation of the model shall give optimum selection of equipment fleet not only based on cost effectiveness but also in terms of versatility. To validate the model, a case study of an actual dam construction project was selected to quantify its degree of accuracy.

Keywords: Operation analysis, optimization model, equipment economics, equipment selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4260
950 Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
949 Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis

Authors: C. Ardil

Abstract:

Being effective in every organizational activity has become necessary due to the escalating level of competition in all areas of corporate life. In the context of supply chain management, aircraft supplier selection is currently one of the most crucial activities. It is possible to choose the best aircraft supplier and deliver efficiency in terms of cost, quality, delivery time, economic status, and institutionalization if a systematic supplier selection approach is used. In this study, an effective multiple criteria decision-making methodology, proximity measure method (PMM), is used within a fuzzy environment based on the vague structure of the real working environment. The best appropriate aircraft suppliers are identified and ranked after the proposed multiple criteria decision making technique is used in a real-life scenario.

Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, PMM, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
948 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection

Authors: K. Metaxiotis, K. Liagkouras

Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Keywords: Expert Systems, Multiobjective optimization, Evolutionary Algorithms, Portfolio Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770