Search results for: student learning.
874 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477873 A Case Study of an Online Assignment Submission System at UOM
Authors: V. Ramnarain-Seetohul, J. Abdool Karim, A. Amir
Abstract:
Almost all universities include some form of assignment in their courses. The assignments are either carried out in either in groups or individually. To effectively manage these submitted assignments, a well-designed assignment submission system is needed, hence the need for an online assignment submission system to facilitate the distribution, and collection of assignments on due dates. The objective of such system is to facilitate interaction of lecturers and students for assessment and grading purposes. The aim of this study was to create a web based online assignment submission system for University of Mauritius. The system was created to eliminate the traditional process of giving an assignment and collecting the answers for the assignment. Lecturers can also create automated assessment to assess the students online. Moreover, the online submission system consists of an automatic mailing system which acts as a reminder for students about the deadlines of the posted assignments. System was tested to measure its acceptance rate among both student and lecturers.
Keywords: Assignment, assessment, online, submission
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7196872 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730871 Learning to Recognize Faces by Local Feature Design and Selection
Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu
Abstract:
Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.Keywords: Face recognition, local feature, AdaBoost, subspace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597870 Comparison of Knowledge Regarding Human Papillomavirus (HPV) and Cervical Cancer in Students with or without Sexual Intercourse
Authors: F. Bakiri, T. Rexha, A. Mitre
Abstract:
The aim of our study was to compare knowledge of regarding HPV and cervical cancer in female student of 18 to 26 years old, with or without sexual intercourse. We conducted a questionnaire survey of the students (N=568), in Faculty of Natural Sciences, Tirana, Albania. Sexually experienced students were more likely to have heard of risk factors such as multiple sex partners, sexual intercourse before age 18, having contracted any sexually transmitted diseases, having genital warts, smoking cigarettes, use of oral contraceptive, poor diet or nutrition and using tampons. No significant sexually experience differences were observed in knowledge of the way of transmission of the virus associated with cervical cancer knowledge, the virus associated with cervical cancer knowledge, the prevention of cervical cancer knowledge. On the other hand strong significant sexually experience differences were observed in knowledge of the diagnostic way of cervical cancer and what HPV can cause knowledge.
Keywords: Risk factors, HPV, Cervical cancer, Albanian students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830869 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano
Abstract:
Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.
Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326868 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language
Authors: Samal Abzhanova, Saule Mussabekova
Abstract:
Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.Keywords: Games, interactive learning, Kazakh language, teaching methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433867 The Radial Pulse Wave and Blood Viscosity
Authors: Hyunhee Ryu, Young Ju Jeon, Jaeuk U. Kim, Hae Jung Lee, Yu Jung Lee, Jong Yeol Kim
Abstract:
The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.
Keywords: Radial pulse wave, Blood viscosity, Hematocrit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969866 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction
Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman
Abstract:
Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.
Keywords: Attitude, computer based instruction, information and communication technologies, technology based instruction, teacher candidate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740865 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program
Authors: Munir Majdalawieh, Adam Marks
Abstract:
In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.Keywords: Academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083864 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539863 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse
Authors: I. Benning
Abstract:
Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar sub-Saharan African countries.
Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396862 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing
Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling
Abstract:
The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing.
Keywords: outreach, education and public engagement, careers, peer interactions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506861 Peculiarities of Comprehending the Subjective Well- Being by Student with High and Low Level of Emotional Intelligence
Authors: Veronika Pivkina, Alla Kim, Khon Nataliya
Abstract:
In this paper, the actuality of the study, and the role of subjective well-being problem in modern psychology and the comprehending of subjective well-being by current students is defined. The purpose of this research is to educe peculiarities of comprehending of subjective well-being by students with various levels of emotional intelligence. Methods of research are adapted Russian-Language questionnaire of K. Riff 'The scales of psychological well-being'; emotional intelligence questionnaire of D. V. Lusin. The research involved 72 students from different universities and disciplines aged between 18 and 24. Analyzing the results of the studies, it can be concluded that the understanding of happiness in different groups of students with high and low levels of overall emotional intelligence is different, as well as differentiated by gender. Students with a higher level of happiness possess more capacity and higher need to control their emotions, to cause and maintain the desired emotions and control something undesirable.
Keywords: Subjective well-being, emotional intelligence, psychology of comprehending, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682860 Family Bonding and Self-Concept: An Indirect Effect Mediated by School Experiences among Students
Abstract:
School experiences, family bonding and self-concept had always been a crucial factor in influencing all aspects of a student-s development. The purpose of this study is to develop and to validate a priori model of self-concept among students. The study was tested empirically using Structural Equation Modeling (SEM) and Confirmatory Factor Analysis (CFA) to validate the structural model. To address these concerns, 1167 students were randomly selected and utilized the Cognitive Psycho-Social University of Malaya instrument (2009).Resulted demonstrated there is indirect effect from family bonding to self-concept through school experiences among secondary school students as a mediator. Besides school experiences, there is a direct effect from family bonding to self-concept and family bonding to school experiences among students.Keywords: Confirmatory Factor Analysis, self-concept, family bonding, and school experience
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599859 Javanese Adolescents- Future Orientation and Support for its Effort: An Indigenous Psychological Analysis
Authors: Niken Rarasati, Moh. A. Hakim, Kwartarini W. Yuniarti
Abstract:
This study aimed to explore future life orientation and support that needed to accomplish it. A total of 258 participants are Javanese high school student. The age of the sample ranges from 14 to 18 years old. Participants were asked about their future aspiration, their reason of choosing them as important goals in their life, and support that they need to accomplished their goals using open ended questionnaire. The responses were categorized through content analysis into four main categories. They are: (1) Self Fulfillment (72.1%) (2) Parents and Family (16.7%) (3) Altruism (8.1%) (4) Social and Economy Status (3.1%). Meanwhile, the categories for support that they needed are shown as follows: (1) Affection Support (64.7%) (2) Spiritual support (17.4%) (3) Material Support (10.9%) (4) Guidance Support (7.0%). The research found that affection support always gets the highest number in every future orientation categories. It can be concluded that although Javanese adolescents have different future orientation, they basically need affection support.Keywords: Affection support, future orientation, indigenous psychology, Javanese adolescent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396858 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560857 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499856 Occupational Safety Need Analysis for Turkey and Europe
Authors: Ismail Muratoglu, Ahmet Meyveci, Abdurrahman Tuncer, Erkan Demirci
Abstract:
This study is dedicated to the analysis of the problems of occupational safety in Turkey, Italy and Poland. The need analysis was applied to three different countries which are Turkey; 4, Poland; 1, Italy; 1 state. The number of the subjects is 891 in Turkey. The number of the subjects is 26 in Italy and the number of the subjects is 19 in Poland. The total number of samples of study is 936. Four different forms (Job Security Experts Form, Student Form, Teacher Form and Company Form) were applied. Results of experts of job security forms are rate of 7.1%. Then, the students’ forms are rate of 34.3%, teacher or instructor forms are rate of 9.9%. The last corporation forms are rate of 48.7%.Keywords: Europe, need analysis, occupational safety, Turkey, vocational education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412855 Cybersecurity Awareness through Laboratories and Cyber Competitions in the Education System: Practices to Promote Student Success
Authors: Haydar Teymourlouei
Abstract:
Cybersecurity is one of the greatest challenges society faces in an age revolving around technological development. With cyber-attacks on the continuous rise, the nation needs to understand and learn ways that can prevent such attacks. A major contribution that can change the education system is to implement laboratories and competitions into academia. This method can improve and educate students with more hands-on exercises in a highly motivating setting. Considering the fact that students are the next generation of the nation’s workforce, it is important for students to understand concepts not only through books, but also through actual hands-on experiences in order for them to be prepared for the workforce. An effective cybersecurity education system is critical for creating a strong cyber secure workforce today and for the future. This paper emphasizes the need for awareness and the need for competitions and cybersecurity laboratories to be implemented into the education system.
Keywords: Awareness, competition, cybersecurity, laboratories, workforce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519854 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines
Authors: Mona Soliman Habib
Abstract:
This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690853 Peer-Mediated Intervention for Social Communication Difficulties in Adolescents with Autism: Literature Review and Research Recommendations
Authors: Christine L. Cole
Abstract:
Adolescents with Autism Spectrum Disorders (ASD) often experience social-communication difficulties that negatively impact their social interactions with typical peers. However, unlike other age and disability groups, there is little intervention research to inform best practice for these students. One evidence-based strategy for younger students with ASD is peer-mediated intervention (PMI). PMI may be particularly promising for use with adolescents, as peers are readily available and are natural experts for encouraging authentic high school conversations. This paper provides a review of previous research that evaluated the use of PMI to improve the socialcommunication skills of students with ASD. Specific intervention features associated with positive student outcomes are identified and recommendations for future research are provided. Adolescents with ASD are targeted due the critical importance of social conversation at the high school level.
Keywords: Autism, peer-mediation, social communication, adolescents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3547852 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in different group aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.
Keywords: Asynchronous Discussion Forums, Content Analysis, Knowledge Construction, Social Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211851 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744850 Performance Evaluation of Universities as Groups of Decision Making Units
Authors: Ali Payan, Bijan Rahmani Parchicolaie
Abstract:
Universities have different offices such as educational, research, student, administrative, and financial offices. This paper considers universities as groups of decision making units (DMUs) in which DMUs are their offices. This approach gives us with a more just evaluation of universities instead of separate evaluation of the offices of universities. The proposed approach to evaluate group performance of universities is based on common set of weights method in DEA. The suggested method not only can compare groups and measure their efficiencies, but also can calculate the efficiency of units within group and efficiency spread of groups. At last, the suggested method is applied for the analysis of the performance of universities in 14th district of Islamic Azad University as groups under evaluation.
Keywords: Common set of weights, group efficiency, performance analysis, spread efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469849 Expanding Business Strategy to Native American Communities Using Experiential Learning
Authors: A. J. Otjen
Abstract:
Native American communities are struggling with unemployment and depressed economies. A major cause is a lack of business knowledge, education, and cultural desire. And yet, in the history of the American West, Native Americans were considered the best traders and negotiators for everything from furs to weapons to buffalo. To improve these economies, there has been an effort to reintroduce that heritage to todays and tomorrows generation of tribal members, such Crow, Cheyenne, and Blackfeet. Professors at the College of Business Montana State University-Billings (MSUB) teach tribal students in Montana to create business plans. These plans have won national small business plan competitions. The teaching and advising method used at MSUB is uniquely successful as theses business students are now five time national champions. This article reviews the environment and the method of learning to achieve a winning small business plan with Native American students. It discusses the five plans that became national champions. And it discusses the problems and solutions discovered in the process of achieving results. Students who participated in this endeavor have graduated and become CPAs, MBAs, and gainfully employed in their chosen professions. They have also worked to improve the economies of their native lands and homes. By educating members of these communities with business strategy and plan development, they are better able to impact their own economies.Keywords: Entrepreneurship, Native Americans economies, small businesses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616848 Network Effects and QoS as Determining Factors in Selection of Mobile Operator: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
The use of mobile phones is growing tremendously all over the world. In Tanzania there are a number of operators licensed by Tanzania Communications Regulatory Authority (TCRA) aiming at attracting customers into their networks. So far telecommunications market competition has been very stiff. Various measures are being taken by mobile operators to survive in the market. Such measure include introducing of different air time bundles on daily, weekly and monthly at lower tariffs. Other measures include the introduction of normal tariff, tourist package and one network. Despite of all these strategies, there is a dynamic competition in the market which needs to be explored. Some influences which attract customers to choose a certain mobile operator are of particular interest. This paper is investigating if the network effects and Quality of Services (QoS) influence mobile customers in selection of their mobile network operators. Seventy seven students from high learning institutions in Dodoma Municipality in Tanzania participated in responding to prepared questionnaires. The data was analyzed using Statistical Package for Social Science (SPSS) Software. The results indicate that, network coverage does influence customers in selection of mobile operators. In addition, this paper proposes further research in some areas especially where the study came up with different findings from what the theory has in place.
Keywords: Network effects, Quality of services, Consumer Buying, mobile operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342847 Fenestration Effects on Cross Ventilation for a Typical Taiwanese School Building When Applying Wind Profile
Authors: Wei-Hwa Chiang, Hao-Hsiang Hsu, Jian-Sheng Huang
Abstract:
Appropriate ventilation in a classroom is helpful for enhancing air exchange rate and student concentration. This study focuses on the effects of fenestration in a four-story school building by performing numerical simulation of a building when considering indoor and outdoor environments simultaneously. The wind profile function embedded in PHOENICS code was set as the inlet boundary condition in a suburban environment. Sixteen fenestration combinations were compared in a classroom containing thirty seats. This study evaluates mean age of air (AGE) and airflow pattern of a classroom on different floors. Considering both wind profile and fenestration effects, the airflow on higher floors is channeled toward the area near ceiling in a room and causes older mean age of air in the breathing zone. The results in this study serve as a useful guide for enhancing natural ventilation in a typical school building.Keywords: Cross ventilation, Fenestration effect, Wind profile, Mean age of air, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027846 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230845 Linking Business Process Models and System Models Based on Business Process Modelling
Authors: Faisal A. Aburub
Abstract:
Organizations today need to invest in software in order to run their businesses, and to the organizations’ objectives, the software should be in line with the business process. This research presents an approach for linking process models and system models. Particularly, the new approach aims to synthesize sequence diagram based on role activity diagram (RAD) model. The approach includes four steps namely: Create business process model using RAD, identify computerized activities, identify entities in sequence diagram and identify messages in sequence diagram. The new approach has been validated using the process of student registration in University of Petra as a case study. Further research is required to validate the new approach using different domains.
Keywords: Business process modelling, system models, role activity diagrams, sequence diagrams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526