Search results for: decision regions
1330 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications
Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber
Abstract:
Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.
Keywords: Classification, High dimensional data, Machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23841329 Study on Mitigation Measures of Gumti Hydro Power Plant Using Analytic Hierarchy Process and Concordance Analysis Techniques
Authors: K. Majumdar, S. Datta
Abstract:
Electricity is recognized as fundamental to industrialization and improving the quality of life of the people. Harnessing the immense untapped hydropower potential in Tripura region opens avenues for growth and provides an opportunity to improve the well-being of the people of the region, while making substantial contribution to the national economy. Gumti hydro power plant generates power to mitigate the crisis of power in Tripura, India. The first unit of hydro power plant (5MW) was commissioned in June 1976 & another two units of 5 MW was commissioned simultaneously. But out of 15MW capacity at present only 8MW- 9MW power is produced from Gumti hydro power plant during rainy season. But during lean season the production reduces to 0.5MW due to shortage of water. Now, it is essential to implement some mitigation measures so that the further atrocities can be prevented and originality will be possible to restore. The decision making ability of the Analytic Hierarchy Process (AHP) and Concordance Analysis Techniques (CAT) are utilized to identify the better decision or solution to the present problem. Some related attributes are identified by the method of surveying within the experts and the available reports and literatures. Similar criteria are removed and ultimately seven relevant ones are identified. All the attributes are compared with each other and rated accordingly to their importance over the other with the help of Pair wise Comparison Matrix. In the present investigation different mitigation measures are identified and compared to find the best suitable alternative which can solve the present uncertainties involving the existence of the Gumti Hydro Power Plant.
Keywords: Concordance Analysis Techniques, Analytic Hierarchy Process, Hydro Power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901328 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method
Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang
Abstract:
The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.
Keywords: Contractor selection, Libyan construction industry, Decision experts and Delphi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29521327 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems
Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb
Abstract:
This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.Keywords: AQM, first-order controller, time delay, stability, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631326 Tagged Grid Matching Based Object Detection in Wavelet Neural Network
Authors: R. Arulmurugan, P. Sengottuvelan
Abstract:
Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.
Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651325 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531324 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods
Authors: Shima Nabinejad, Holger Schüttrumpf
Abstract:
Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.
Keywords: Crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14431323 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: Economic production quantity, random cost, supply chain management, vendor-managed inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6831322 Millennials' Viewpoints about Sustainable Hotels' Practices in Egypt: Promoting Responsible Consumerism
Authors: Jailan Mohamed El Demerdash
Abstract:
Millennials are a distinctive and dominant consumer group whose behavior, preferences and purchase decisions are broadly explored but not fully understood yet. Making up the largest market segment in the world, and in Egypt, they have the power to reinvent the hospitality industry and contribute to forming prospective demand for green hotels by showing willingness to adopting their environmental-friendly practices. The current study aims to enhance better understanding of Millennials' perception about sustainable initiatives and to increase the prediction power of their intentions regarding green hotel practices in Egypt. In doing so, the study is exploring the relation among different factors; Millennials' environmental awareness, their acceptance of green practices and their willingness to pay more for them. Millennials' profile, their preferences and environmental decision-making process are brought under light to stimulate actions of hospitality decision-makers and hoteliers. Bearing in mind that responsible consumerism is depending on understanding the different influences on consumption. The study questionnaire was composed of four sections and it was distributed to random Egyptian travelers' blogs and Facebook groups, with approximately 8000 members. Analysis of variance test (ANOVA) was used to examine the study variables. The findings indicated that Millennials' environmental awareness will not be a significant factor in their acceptance of hotel green practices, as well as, their willingness to pay more for them. However, Millennials' acceptance of the level of hotel green practices will have an impact on their willingness to pay more. Millennials were found to have a noticeable level of environmental awareness but lack commitment to tolerating hotel green practices and their associated high prices.
Keywords: Millennials, environment, awareness, green practices, paying more, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10851321 Algorithm for Bleeding Determination Based On Object Recognition and Local Color Features in Capsule Endoscopy
Authors: Yong-Gyu Lee, Jin Hee Park, Youngdae Seo, Gilwon Yoon
Abstract:
Automatic determination of blood in less bright or noisy capsule endoscopic images is difficult due to low S/N ratio. Especially it may not be accurate to analyze these images due to the influence of external disturbance. Therefore, we proposed detection methods that are not dependent only on color bands. In locating bleeding regions, the identification of object outlines in the frame and features of their local colors were taken into consideration. The results showed that the capability of detecting bleeding was much improved.Keywords: Endoscopy, object recognition, bleeding, image processing, RGB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391320 Towards Improved Public Information on Industrial Emissions in Italy: Concepts and Specific Issues Associated to the Italian Experience in IPPC Permit Licensing
Authors: Mazziotti Gomez de Teran C., Fiore D., Cola B., Fardelli A.
Abstract:
The present paper summarizes the analysis of the request for consultation of information and data on industrial emissions made publicly available on the web site of the Ministry of Environment, Land and Sea on integrated pollution prevention and control from large industrial installations, the so called “AIA Portal”. As a matter of fact, a huge amount of information on national industrial plants is already available on internet, although it is usually proposed as textual documentation or images. Thus, it is not possible to access all the relevant information through interoperability systems and also to retrieval relevant information for decision making purposes as well as rising of awareness on environmental issue. Moreover, since in Italy the number of institutional and private subjects involved in the management of the public information on industrial emissions is substantial, the access to the information is provided on internet web sites according to different criteria; thus, at present it is not structurally homogeneous and comparable. To overcome the mentioned difficulties in the case of the Coordinating Committee for the implementation of the Agreement for the industrial area in Taranto and Statte, operating before the IPPC permit granting procedures of the relevant installation located in the area, a big effort was devoted to elaborate and to validate data and information on characterization of soil, ground water aquifer and coastal sea at disposal of different subjects to derive a global perspective for decision making purposes. Thus, the present paper also focuses on main outcomes matured during such experience.
Keywords: Public information, emissions into atmosphere, IPPC permits, territorial information systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20581319 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: Black Sea hydrates, depressurization, turbidites, HydrateResSim.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591318 Local Stability of Equilibria: Leptospirosis
Authors: Rujira Kongnuy
Abstract:
Leptospirosis is recognized as an important zoonosis in tropical regions well as an important animal disease with substantial loss in production. In this study, the model for the transmission of the Leptospirosis disease to human population are discussed. Model is described the vector population dynamics and the Leptospirosis transmission to the human population are discussed. Local analysis of equilibria are given. We confirm the results by using numerical results.Keywords: Eigenvalues, Leptospirosis, Local Stability, Numerical Result
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13071317 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management
Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal
Abstract:
Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.Keywords: Sustainable supply chain management, supplier selection, MCDM tools, AHP analysis, TOPSIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34901316 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.
Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24801315 Balance of Rural and Urban Structures
Authors: Ehrenstorfer Barbara, Peherstorfer Tanja, Nový Jan
Abstract:
Urbanization and regionalization are two different approaches when it comes to economical structures and development, infrastructure and mobility, quality of life and living, education, social cohesion and many other topics. At first glance, the structures associated with urbanization and regionalization seems to be contradicting. This paper discusses possibilities of transfer and cooperation between rural and urban structures. An empirical investigation contributed to reveal scenarios of supposable forms of exchange and cooperation of remote rural areas and big cities.Keywords: Learning Regions, Quality of Life and Living, Regional and Rural Development, Social Innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381314 Structural Funds of Polish Agriculture
Authors: Agata Niewiadomska, Adam Niewiadomski
Abstract:
The research objective of the project and article “The impact of Structural Funds on the growth of competitiveness of Polish agriculture" is to assess competitiveness of regions in Poland from the perspective of Polish agriculture by analysing the efficiency of the use of Structural Funds, the economic procedure of their distribution and the regulatory and organisational framework under the Rural Development Programme (RDP). It must be stressed that defining the scope of research in the above manner limits the analysis only to the part of Structural Funds directed to support Polish agriculture.
Keywords: Structural Funds, Polish agriculture, Rural Development Programme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001313 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach
Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee
Abstract:
The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.
Keywords: Participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841312 Enhancing Agricultural Sustainability and Food Security in Somalia: Addressing Climate Change Challenges
Authors: Ahmed A. Hassan
Abstract:
The agriculture industry in Somalia employs a large portion of the country's workforce. Somalia has been known for its production and notable agriculture for many years, the key sector that fuels the country's economy. Due to decades of civil conflict, poor administration, neglect, and a string of natural calamities, the Somali agricultural industry has suffered significant damage. The irrigation systems in Juba and Shabelle, the two major rivers, have failed and deteriorated. Crop output has decreased because of ongoing drought, poor agricultural techniques, desertification, and the exodus of rural people to neighboring nations. With pandemic levels of hunger and malnutrition brought on by climate change, Somalia has become one of the world's most food-insecure countries. Additionally, there is strong evidence that climate change, particularly in Somalia and other East African nations, has exacerbated civil wars across Africa. The El Nino/Southern Oscillation, which results in drier and warmer weather in tropical regions, may have contributed to numerous civil wars. Additionally, an increase in temperature is believed to raise the risk of internal armed conflict in sub-Saharan African nations. This paper examines Somalia's present extension programs, lists the challenges the nation's agricultural industry faces, and discusses the effects of climate change. Improvement measures are advised based on the analysis presented in the paper. This article's major goals are to highlight the serious challenges that Somali farmers face and to offer potential solutions for achieving sustainable agriculture and food security through the worst of climate change. Farmers, legislators, decision-makers, and academics may find the material in this article useful in developing credible plans, and policies, and in establishing research and extension programs. With improved extension systems, management, encouraging public investments, and an enabling climate, Somalia's agricultural industry can increase its resilience, the quality of life for its population, and the safety and added value of its goods. Offshore and coastal fisheries can contribute more to sector growth and return to and surpass their amazing pre-war output and export levels.
Keywords: Sustainable agriculture, innovation, land use, climate change, farm management, drought management, resilience, agri-business, agri-extension, farmer field schools, agricultural development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981311 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5941310 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting and tracking of physical items in combination with Internet of Things (IoT) developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm decision-making process does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyze on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue and environmental impact. Evolutionary Computing (EC) can be very effective in finding the optimal combination of sets of some objects and finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and EC in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management and its uptake has become a continuing trend.
Keywords: Big data, evolutionary computing, cloud, precision technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7571309 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931308 Design Considerations of PV Water Pumping and Rural Electricity System (2011) in Lower Myanmar
Authors: Nang Saw Yuzana Kya ing, Wunna Swe
Abstract:
Photovoltaic (PV) systems provides a viable means of power generation for applications like powering residential appliances, electrification of villages in rural areas, refrigeration and water pumping. Photovoltaic-power generation is reliable. The operation and maintenance costs are very low. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the solar energy could hopefully become the final solution to its energy supply problem in rural area.Keywords: Myanmar, Standalone PV Inverter, PV WaterPumping, Design Analysis, Induction Motor Driving System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051307 Attribute Selection for Preference Functions in Engineering Design
Authors: Ali E. Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. When designing a product, it is important to determine the appropriate attributes of value and the preference function for which the product is optimized. This paper provides some guidelines on appropriate selection of attributes for preference and value functions for engineering design.
Keywords: Decision analysis, engineering design, direct vs. indirect values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9091306 Economics of Conflict: Core Economic Dimensions of the Georgian-South Ossetian Context
Authors: V. Charaia
Abstract:
This article presents SWOT analysis for Georgian - South Ossetian conflict. The research analyzes socio-economic aspects and considers future prospects for all sides including neighbor countries and regions. Also it includes the possibilities of positive intervention of neighbor countries to solve the conflict or to mitigate its negative results. The main question of the article is: What will it take to award Georgians and South Ossetians with a peace dividend?
Keywords: Conflict economics, Georgian economy, international organizations, peace building, S. Ossetian economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521305 Unified Method to Block Pornographic Images in Websites
Authors: Sakthi Priya Balaji R., Vijayendar G.
Abstract:
This paper proposes a technique to block adult images displayed in websites. The filter is designed so as to perform even in exceptional cases such as, where face detection is not possible or improper face visibility. This is achieved by using an alternative phase to extract the MFC (Most Frequent Color) from the Human Body regions estimated using a biometric of anthropometric distances between fixed rigidly connected body locations. The logical results generated can be protected from overriding by a firewall or intrusion, by encrypting the result in a SSH data packet.
Keywords: Face detection, characteristics extraction andclassification, Component based shape analysis and classification, open source SSH V2 protocol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961304 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.
Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4081303 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection
Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi
Abstract:
It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, hybrid, filter-wrapper, phishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791302 Electronic Voting System using Mobile Terminal
Authors: Keonwoo Kim, Dowon Hong
Abstract:
Electronic voting (E-voting) using an internet has been recently performed in some nations and regions. There is no spatial restriction which a voter directly has to visit the polling place, but an e-voting using an internet has to go together the computer in which the internet connection is possible. Also, this voting requires an access code for the e-voting through the beforehand report of a voter. To minimize these disadvantages, we propose a method in which a voter, who has the wireless certificate issued in advance, uses its own cellular phone for an e-voting without the special registration for a vote. Our proposal allows a voter to cast his vote in a simple and convenient way without the limit of time and location, thereby increasing the voting rate, and also ensuring confidentiality and anonymity.Keywords: Voting, mobile terminal, confidentiality, anonymity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27701301 Determinants of Never Users of Contraception – Results from Pakistan Demographic and Health Survey 2012-13
Authors: Arsalan Jabbar, Wajiha Javed, Nelofer Mehboob, Zahid Memon
Abstract:
Introduction: There are multiple social, individual and cultural factors that influence an individual’s decision to adopt family planning methods especially among non-users in patriarchal societies like Pakistan. Non-users, if targeted efficiently, can contribute significantly to country’s CPR. A research study showed that nonusers if convinced to adopt lactational amenorrhea method can shift to long term methods in future. Research shows that if non users are targeted efficiently a 59% reduction in unintended pregnancies in Saharan Africa and South-Central and South-East Asia is anticipated. Methods: We did secondary data analysis on Pakistan Demographic Heath Survey (2012-13) dataset. Use of contraception (never-use/ever-use) was the outcome variable. At univariate level Chi-square/Fisher Exact test was used to assess relationship of baseline covariates with contraception use. Then variables to be incorporated in the model were checked for multicollinearity, confounding and interaction. Then binary logistic regression (with an urban-rural stratification) was done to find relationship between contraception use and baseline demographic and social variables. Results: The multivariate analyses of the study showed that younger women (≤ 29 years)were more prone to be never users as compared to those who were >30 years and this trend was seen in urban areas (AOR 1.92, CI 1.453-2.536) as well as rural areas (AOR 1.809, CI 1.421-2.303). While looking at regional variation, women from urban Sindh (AOR 1.548, CI 1.142-2.099) and urban Balochistan (AOR 2.403, CI 1.504-3.839) had more never users as compared to other urban regions. Women in the rich wealth quintile were more never users and this was seen both in urban and rural localities (urban (AOR 1.106 CI .753-1.624); rural areas (AOR 1.162, CI .887-1.524)) even though these were not statistically significant. Women idealizing more children (>4) are more never users as compared to those idealizing less children in both urban (AOR 1.854, CI 1.275-2.697) and rural areas (AOR 2.101, CI 1.514-2.916). Women who never lost a pregnancy were more inclined to be nonusers in rural areas (AOR 1.394, CI 1.127-1.723) .Women familiar with only traditional or no method had more never users in rural areas (AOR 1.717, CI 1.127-1.723) but in urban areas it wasn’t significant. Women unaware of Lady Health Worker’s presence in their area were more never users especially in rural areas (AOR 1.276, CI 1.014-1.607). Women who did not visit any care provider were more never users (urban (AOR 11.738, CI 9.112-15.121) rural areas (AOR 7.832, CI 6.243-9.826)). Discussion/Conclusion: This study concluded that government, policy makers and private sector family planning programs should focus on the untapped pool of never users (younger women from underserved provinces, in higher wealth quintiles, who desire more children.). We need to make sure to cover catchment areas where there are less LHWs and less providers as ignorance to modern methods and never been visited by an LHW are important determinants of never use. This all is in sync with previous literate from similar developing countries.Keywords: Contraception, Demographic and Health Survey, Family Planning, Never users.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175