Search results for: supervised machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2914

Search results for: supervised machine learning

2224 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
2223 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines

Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović

Abstract:

This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.  

Keywords: Wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emissions, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
2222 Computer Aided Language Learning System for Arabic for Second Language Learners

Authors: Osama Abufanas

Abstract:

This paper aims to build an Arabic learning language tool using Flash CS4 professional software with action script 3.0 programming language, based on the Computer Aided Language Learning (CALL) material. An extra intention is to provide a primary tool and focus on learning Arabic as a second language to adults. It contains letters, words and sentences at the first stage. This includes interactive practices, which evaluates learners’ comprehension of the Arabic language. The system was examined and it was found that the language structure was correct and learners were satisfied regarding the system tools. The learners found the system tools efficient and simple to use. The paper's main conclusion illustrates that CALL can be applied without any hesitation to second language learners

Keywords: Arabic Language, Computer Aided Language Learning (CALL), Learner, Material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
2221 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar

Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour

Abstract:

This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.

Keywords: Digital technology, inquiry-based learning, mathematics and science education, professional development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
2220 Enhancing Word Meaning Retrieval Using FastText and NLP Techniques

Authors: Sankalp Devanand, Prateek Agasimani, V. S. Shamith, Rohith Neeraje

Abstract:

Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English to Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity etc.

Keywords: Machine translation, English to Sanskrit, natural language processing, word meaning retrieval, FastText embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
2219 Experience-based Learning Program for Electronic Circuit Design

Authors: Koyu Chinen, Haruka Mikamori

Abstract:

A new multi-step comprehensive experience-based learning program was developed and carried out so that the students understood about what was the principle of the circuit function and how the designed circuit was used in actual advanced applications.

Keywords: Electronic circuit education, Experience based learning, Comprehensive education,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
2218 Design of a Statistics Lecture for Multidisciplinary Postgraduate Students Using a Range of Tools and Techniques

Authors: S. Assi, M. Haffar

Abstract:

Teaching statistics is a critical and challenging issue especially to students from multidisciplinary and diverse postgraduate backgrounds. Postgraduate research students require statistics not only for the design of experiments; but also for data analysis. Students often perceive statistics as a complex and technical subject; thus, they leave data analysis to the last moment. The lecture needs to be simple and inclusive at the same time to make it comprehendible and address the learning needs of each student. Therefore, the aim of this work was to design a simple and comprehendible statistics lecture to postgraduate research students regarding ‘Research plan, design and data collection’. The lecture adopted the constructive alignment learning theory which facilitated the learning environments for the students. The learning environment utilized a student-centered approach and used interactive learning environment with in-class discussion, handouts and electronic voting system handsets. For evaluation of the lecture, formative assessment was made with in-class discussions and poll questions which were introduced during and after the lecture. The whole approach showed to be effective in creating a learning environment to the students who were able to apply the concepts addressed to their individual research projects.

Keywords: Teaching, statistics, lecture, multidisciplinary, postgraduate, learning theory, learning environment, student-centered approach, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
2217 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University

Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M. Anandhavalli, K. Gauthaman

Abstract:

Social Media (SM) is websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly College students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.

Keywords: Social Media, Web 2.0, Perceived ease of use, perceived usefulness, Collaborative Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
2216 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory

Authors: Byoung-Tak Zhang, Chan-Hoon Park

Abstract:

Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.

Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2215 Toward a Model for Knowledge Development in Virtual Environments: Strategies for Student Ownership

Authors: N.B. Adams

Abstract:

This article discusses the concept of student ownership of knowledge and seeks to determine how to move students from knowledge acquisition to knowledge application and ultimately to knowledge generation in a virtual setting. Instructional strategies for fostering student engagement in a virtual environment are critical to the learner-s strategic ownership of the knowledge. A number of relevant theories that focus on learning, affect, needs and adult concerns are presented to provide a basis for exploring the transfer of knowledge from teacher to learner. A model under development is presented that combines the dimensions of knowledge approach, the teacher-student relationship with regards to knowledge authority and teaching approach to demonstrate the recursive and scaffolded design for creation of virtual learning environments.

Keywords: Virtual learning environments, learning theory, teaching model, online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
2214 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
2213 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
2212 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0

Authors: Naveen Kumar, Shyambihari Prajapati

Abstract:

Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.

Keywords: Industry 4.0, sensor dashboard design, Cyber-physical production system, Interface designer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
2211 Automatic Inspection of Percussion Caps by Means of Combined 2D and 3D Machine Vision Techniques

Authors: A. Tellaeche, R. Arana, I.Maurtua

Abstract:

The exhaustive quality control is becoming more and more important when commercializing competitive products in the world's globalized market. Taken this affirmation as an undeniable truth, it becomes critical in certain sector markets that need to offer the highest restrictions in quality terms. One of these examples is the percussion cap mass production, a critical element assembled in firearm ammunition. These elements, built in great quantities at a very high speed, must achieve a minimum tolerance deviation in their fabrication, due to their vital importance in firing the piece of ammunition where they are built in. This paper outlines a machine vision development for the 100% inspection of percussion caps obtaining data from 2D and 3D simultaneous images. The acquisition speed and precision of these images from a metallic reflective piece as a percussion cap, the accuracy of the measures taken from these images and the multiple fabrication errors detected make the main findings of this work.

Keywords: critical tolerance, high speed decision makingsimultaneous 2D/3D machine vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
2210 The Efficacy of Technology in Enhancing the Development and Learning of Children (0 – 5 Years)

Authors: Adesina, Olusola Joseph

Abstract:

The use of Technological tools in the classroom setting has drawn the interest of researchers all over the world in the recent time. Technology has been identified in the recent time as potentials tools to aid learning especially during early childhood stage. The main objective of this is to assist the upcoming younger generations to acquire necessary skills for cognitive development which later enhances effective teaching learning process. The integration of Technology in early childhood requires a careful selection of devices that will both assist the children and the teachers or care givers. This paper therefore, examines some selected literature evidences and highlighted the efficacy of various technologies tools in enhancing the development and learning of children (0 – 5 years). Conclusion and recommendations were also drawn in this paper. 

Keywords: Development, Efficacy, Learning, Technological Device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
2209 Laban Movement Analysis Using Kinect

Authors: Ran Bernstein, Tal Shafir, Rachelle Tsachor, Karen Studd, Assaf Schuster

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban Movement Analysis, Kinect, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
2208 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained. 

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
2207 A Visual Educational Modeling Language to Help Teachers in Learning Scenario Design

Authors: A. Retbi, M. Khalidi Idrissi, S. Bennani

Abstract:

The success of an e-learning system is highly dependent on the quality of its educational content and how effective, complete, and simple the design tool can be for teachers. Educational modeling languages (EMLs) are proposed as design languages intended to teachers for modeling diverse teaching-learning experiences, independently of the pedagogical approach and in different contexts. However, most existing EMLs are criticized for being too abstract and too complex to be understood and manipulated by teachers. In this paper, we present a visual EML that simplifies the process of designing learning scenarios for teachers with no programming background. Based on the conceptual framework of the activity theory, our resulting visual EML focuses on using Domainspecific modeling techniques to provide a pedagogical level of abstraction in the design process.

Keywords: Educational modeling language, Domain Specific Modeling, authoring systems, learning scenario.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
2206 A Validity and Reliability Study of Grasha- Riechmann Student Learning Style Scale

Authors: Yaşar Baykul, Musa Gürsel, Hacı Sulak, Erhan Ertekin, Ersen Yazıcı, Osman Dülger, Yasin Aslan, Kağan Büyükkarcı

Abstract:

The reliability of the tools developed to learn the learning styles is essential to find out students- learning styles trustworthily. For this purpose, the psychometric features of Grasha- Riechman Student Learning Style Inventory developed by Grasha was studied to contribute to this field. The study was carried out on 6th, 7th, and 8th graders of 10 primary education schools in Konya. The inventory was applied twice with an interval of one month, and according to the data of this application, the reliability coefficient numbers of the 6 sub-dimensions pointed in the theory of the inventory was found to be medium. Besides, it was found that the inventory does not have a structure with 6 factors for both Mathematics and English courses as represented in the theory.

Keywords: Learning styles, Grasha-Riechmann, reliability, validity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6557
2205 Statistical Texture Analysis

Authors: G. N. Srinivasan, G. Shobha

Abstract:

This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.

Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
2204 Determining the Gender of Korean Names for Pronoun Generation

Authors: Seong-Bae Park, Hee-Geun Yoon

Abstract:

It is an important task in Korean-English machine translation to classify the gender of names correctly. When a sentence is composed of two or more clauses and only one subject is given as a proper noun, it is important to find the gender of the proper noun for correct translation of the sentence. This is because a singular pronoun has a gender in English while it does not in Korean. Thus, in Korean-English machine translation, the gender of a proper noun should be determined. More generally, this task can be expanded into the classification of the general Korean names. This paper proposes a statistical method for this problem. By considering a name as just a sequence of syllables, it is possible to get a statistics for each name from a collection of names. An evaluation of the proposed method yields the improvement in accuracy over the simple looking-up of the collection. While the accuracy of the looking-up method is 64.11%, that of the proposed method is 81.49%. This implies that the proposed method is more plausible for the gender classification of the Korean names.

Keywords: machine translation, natural language processing, gender of proper nouns, statistical method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
2203 Investigation of Learning Challenges in Building Measurement Unit

Authors: Argaw T. Gurmu, Muhammad N. Mahmood

Abstract:

The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.

Keywords: Building measurement, construction management, learning challenges, evaluate survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
2202 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of e-Learning

Authors: Samson T. Obafemi, Seraphin D. Eyono Obono

Abstract:

Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.

Keywords: Academic performance, e-learning, Learning theories, Teaching and Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
2201 Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions

Authors: K. M. Faraoun, A. Boukelif

Abstract:

In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.

Keywords: Neural networks, Intrusion detection, learningenhancement, K-means clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3611
2200 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset

Authors: Essam Al Daoud

Abstract:

Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.

Keywords: Gradient boosting, XGBoost, LightGBM, CatBoost, home credit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9462
2199 Deep Learning and Virtual Environment

Authors: Danielle Morin, Jennifer D.E.Thomas, Raafat G. Saade

Abstract:

While computers are known to facilitate lower levels of learning, such as rote memorization of facts, measurable through electronically administered and graded multiple-choice questions, yes/no, and true/false answers, the imparting and measurement of higher-level cognitive skills is more vexing. These require more open-ended delivery and answers, and may be more problematic in an entirely virtual environment, notwithstanding the advances in technologies such as wikis, blogs, discussion boards, etc. As with the integration of all technology, merit is based more on the instructional design of the course than on the technology employed in, and of, itself. With this in mind, this study examined the perceptions of online students in an introductory Computer Information Systems course regarding the fostering of various higher-order thinking and team-building skills as a result of the activities, resources and technologies (ART) used in the course.

Keywords: Critical thinking, deep learning, distance learning, elearning, online learning, virtual environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
2198 Face Recognition with PCA and KPCA using Elman Neural Network and SVM

Authors: Hossein Esbati, Jalil Shirazi

Abstract:

In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.

Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
2197 Students’ Views on Mathematics Learning: A Cross-Sectional Survey of Senior Secondary Schools Students in Katsina State of Nigeria

Authors: Fahad Suleiman

Abstract:

The aim of this paper is to study students’ view on mathematics learning in Katsina State Senior Secondary Schools of Nigeria, such as their conceptions of mathematics, attitudes toward mathematics learning, etc. A questionnaire was administered to a random sample of 1,225 senior secondary two (SS II) students of Katsina State in Nigeria. The data collected showed a clear picture of the hurdles that affect the teaching and learning of mathematics in our schools. Problems such as logistics and operational which include shortage of mathematics teachers, non–availability of a mathematics laboratory, etc. were identified. It also depicted the substantial trends of changing views and attitudes toward mathematics across secondary schools. Students’ responses to the conception of mathematics were consistent and they demonstrated some specific characteristics of their views in learning mathematics. This survey has provided useful information regarding students’ needs and aspirations in mathematics learning for curriculum planners and frontline teachers for future curriculum reform and implementation.

Keywords: Attitude, education, mathematics, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
2196 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: Big data, k-NN, machine learning, traffic speed prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
2195 Evaluating the Role of Multisensory Elements in Foreign Language Acquisition

Authors: Sari Myréen

Abstract:

The aim of this study was to evaluate the role of multisensory elements in enhancing and facilitating foreign language acquisition among adult students in a language classroom. The use of multisensory elements enables the creation of a student-centered classroom, where the focus is on individual learner’s language learning process, perceptions and motivation. Multisensory language learning is a pedagogical approach where the language learner uses all the senses more effectively than in a traditional in-class environment. Language learning is facilitated due to multisensory stimuli which increase the number of cognitive connections in the learner and take into consideration different types of learners. A living lab called Multisensory Space creates a relaxed and receptive state in the learners through various multisensory stimuli, and thus promotes their natural foreign language acquisition. Qualitative and quantitative data were collected in two questionnaire inquiries among the Finnish students of a higher education institute at the end of their basic French courses in December 2014 and 2016. The inquiries discussed the effects of multisensory elements on the students’ motivation to study French as well as their learning outcomes. The results show that the French classes in the Multisensory Space provide the students with an encouraging and pleasant learning environment, which has a positive impact on their motivation to study the foreign language as well as their language learning outcomes.

Keywords: Foreign language acquisition, foreign language learning, higher education, multisensory learning, pedagogical approach, transcultural learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379