Search results for: Fuzzy Subsumption Relation
950 Cooperative Multi Agent Soccer Robot Team
Authors: Vahid Rostami, Saeed Ebrahimijam, P.khajehpoor, P.Mirzaei, Mahdi Yousefiazar
Abstract:
This paper introduces our first efforts of developing a new team for RoboCup Middle Size Competition. In our robots we have applied omni directional based mobile system with omnidirectional vision system and fuzzy control algorithm to navigate robots. The control architecture of MRL middle-size robots is a three layered architecture, Planning, Sequencing, and Executing. It also uses Blackboard system to achieve coordination among agents. Moreover, the architecture should have minimum dependency on low level structure and have a uniform protocol to interact with real robot.Keywords: Robocup, Soccer robots, Fuzzy controller, Multi agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558949 Learning FCM by Tabu Search
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mostafa Jafari, Salman Hooshmand
Abstract:
Fuzzy Cognitive Maps (FCMs) is a causal graph, which shows the relations between essential components in complex systems. Experts who are familiar with the system components and their relations can generate a related FCM. There is a big gap when human experts cannot produce FCM or even there is no expert to produce the related FCM. Therefore, a new mechanism must be used to bridge this gap. In this paper, a novel learning method is proposed to construct causal graph based on historical data and by using metaheuristic such Tabu Search (TS). The efficiency of the proposed method is shown via comparison of its results of some numerical examples with those of some other methods.
Keywords: Fuzzy Cognitive Map (FCM), Learning, Meta heuristic, Genetic Algorithm, Tabu search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864948 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach
Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi
Abstract:
In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.Keywords: Green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424947 Study of Variation of Winds Behavior on Micro Urban Environment with Use of Fuzzy Logic for Wind Power Generation: Case Study in the Cities of Arraial do Cabo and São Pedro da Aldeia, State of Rio de Janeiro, Brazil
Authors: Roberto Rosenhaim, Marcos Antonio Crus Moreira, Robson da Cunha, Gerson Gomes Cunha
Abstract:
This work provides details on the wind speed behavior within cities of Arraial do Cabo and São Pedro da Aldeia located in the Lakes Region of the State of Rio de Janeiro, Brazil. This region has one of the best potentials for wind power generation. In interurban layer, wind conditions are very complex and depend on physical geography, size and orientation of buildings and constructions around, population density, and land use. In the same context, the fundamental surface parameter that governs the production of flow turbulence in urban canyons is the surface roughness. Such factors can influence the potential for power generation from the wind within the cities. Moreover, the use of wind on a small scale is not fully utilized due to complexity of wind flow measurement inside the cities. It is difficult to accurately predict this type of resource. This study demonstrates how fuzzy logic can facilitate the assessment of the complexity of the wind potential inside the cities. It presents a decision support tool and its ability to deal with inaccurate information using linguistic variables created by the heuristic method. It relies on the already published studies about the variables that influence the wind speed in the urban environment. These variables were turned into the verbal expressions that are used in computer system, which facilitated the establishment of rules for fuzzy inference and integration with an application for smartphones used in the research. In the first part of the study, challenges of the sustainable development which are described are followed by incentive policies to the use of renewable energy in Brazil. The next chapter follows the study area characteristics and the concepts of fuzzy logic. Data were collected in field experiment by using qualitative and quantitative methods for assessment. As a result, a map of the various points is presented within the cities studied with its wind viability evaluated by a system of decision support using the method multivariate classification based on fuzzy logic.Keywords: Behavior of winds, wind power, fuzzy logic, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100946 Social Relation between the Malays and Chinese Communities from a Civilizational Perspectives
Authors: Wan Norhasniah Wan Husin, Mohd Ridhuan Tee Abdullah
Abstract:
Towards the end of 19th century, the discovery of tin and the growing importance of rubber, had led Malaya to once again become the centre of attraction to western colonization, which later on caused the region to be influxed by cheap labour from China and India. One of the factors which attracted the alien communities was the characteristics of social relation offered by the Malays. If one analyzes the history of social relation of the Malays either among themselves or their relation with alien communities, it is apparent that the community places high regards to values such as tolerant, cooperative, respectful and helpful with each other. In fact, all these values are deeply rooted in the value of 'budi'. With the arrival of Islam, the value of 'budi' had been well assimilated with Islamic values thus giving birth to the value of 'budi-Islam'. Through 'budi- Islam', the Malay conducted their dealings with British as well the other communities during the time of peace or conflict. This value is well nurtured due to the geographical circumstances like the fertile, naturally rich land and bountiful marine life. Besides, a set of Malay customs known as 'adat' custom contributed in enhancing the values of budi.Keywords: Adat System, budi and Islam, Chinese community, Malay community
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236945 Analyzing Artificial Emotion in Game Characters Using Soft Computing
Authors: Musbah M. Aqel, P. K. Mahanti, Soumya Banerjee
Abstract:
This paper describes a simulation model for analyzing artificial emotion injected to design the game characters. Most of the game storyboard is interactive in nature and the virtual characters of the game are equipped with an individual personality and dynamic emotion value which is similar to real life emotion and behavior. The uncertainty in real expression, mood and behavior is also exhibited in game paradigm and this is focused in the present paper through a fuzzy logic based agent and storyboard. Subsequently, a pheromone distribution or labeling is presented mimicking the behavior of social insects.
Keywords: Artificial Emotion, Fuzzy logic, Game character, Pheromone label
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312944 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.
Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338943 Auto-Parking System via Intelligent Computation Intelligence
Authors: Y. J. Huang, C. H. Chang
Abstract:
In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.
Keywords: Auto-parking system, Fuzzy control, Neural network, Robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860942 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data
Authors: N. Borjalilu, P. Rabiei, A. Enjoo
Abstract:
Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.Keywords: F-TOPSIS, fuzzy set, FDM, flight safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887941 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System
Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema
Abstract:
Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.
Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093940 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture
Authors: Ghada Elshafei, Abdelazim Negm
Abstract:
Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.
Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523939 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399938 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil
Abstract:
Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.
Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938937 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water
Authors: S. Areerachakul
Abstract:
Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527936 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289935 Variable Guard Channels for Efficient Traffic Management
Authors: G. M. Mir, N. A. Shah, Moinuddin
Abstract:
Guard channels improve the probability of successful handoffs by reserving a number of channels exclusively for handoffs. This concept has the risk of underutilization of radio spectrum due to the fact that fewer channels are granted to originating calls even if these guard channels are not always used, when originating calls are starving for the want of channels. The penalty is the reduction of total carried traffic. The optimum number of guard channels can help reduce this problem. This paper presents fuzzy logic based guard channel scheme wherein guard channels are reorganized on the basis of traffic density, so that guard channels are provided on need basis. This will help in incorporating more originating calls and hence high throughput of the radio spectrumKeywords: Free channels, fuzzy logic, guard channels, Handoff
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310934 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024933 Developing a Model for the Relation between Heritage and Place Identity
Authors: A. Arjomand Kermani, N. Charbgoo, M. Alalhesabi
Abstract:
In the situation of great acceleration of changes and the need for new developments in the cities on one hand and conservation and regeneration approaches on the other hand, place identity and its relation with heritage context have taken on new importance. This relation is generally mutual and complex one. The significant point in this relation is that the process of identifying something as heritage rather than just historical phenomena, brings that which may be inherited into the realm of identity. In planning and urban design as well as environmental psychology and phenomenology domain, place identity and its attributes and components were studied and discussed. However, the relation between physical environment (especially heritage) and identity has been neglected in the planning literature. This article aims to review the knowledge on this field and develop a model on the influence and relation of these two major concepts (heritage and identity). To build this conceptual model, we draw on available literature in environmental psychology as well as planning on place identity and heritage environment using a descriptive-analytical methodology to understand how they can inform the planning strategies and governance policies. A cross-disciplinary analysis is essential to understand the nature of place identity and heritage context and develop a more holistic model of their relationship in order to be employed in planning process and decision making. Moreover, this broader and more holistic perspective would enable both social scientists and planners to learn from one another’s expertise for a fuller understanding of community dynamics. The result indicates that a combination of these perspectives can provide a richer understanding—not only of how planning impacts our experience of place, but also how place identity can impact community planning and development.
Keywords: heritage, Inter-disciplinary study, Place identity, planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912932 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6249931 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance
Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.
Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742930 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer
Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal
Abstract:
Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.
Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870929 Fuzzy Optimization in Metabolic Systems
Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu
Abstract:
The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.
Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019928 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System
Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana
Abstract:
Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.
Keywords: Automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587927 Design and Control Strategy of Diffused Air Aeration System
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3515926 Soft Real-Time Fuzzy Task Scheduling for Multiprocessor Systems
Authors: Mahdi Hamzeh, Sied Mehdi Fakhraie, Caro Lucas
Abstract:
All practical real-time scheduling algorithms in multiprocessor systems present a trade-off between their computational complexity and performance. In real-time systems, tasks have to be performed correctly and timely. Finding minimal schedule in multiprocessor systems with real-time constraints is shown to be NP-hard. Although some optimal algorithms have been employed in uni-processor systems, they fail when they are applied in multiprocessor systems. The practical scheduling algorithms in real-time systems have not deterministic response time. Deterministic timing behavior is an important parameter for system robustness analysis. The intrinsic uncertainty in dynamic real-time systems increases the difficulties of scheduling problem. To alleviate these difficulties, we have proposed a fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks in multiprocessor systems. Static and dynamic optimal scheduling algorithms fail with non-critical overload. In contrast, our approach balances task loads of the processors successfully while consider starvation prevention and fairness which cause higher priority tasks have higher running probability. A simulation is conducted to evaluate the performance of the proposed approach. Experimental results have shown that the proposed fuzzy scheduler creates feasible schedules for homogeneous and heterogeneous tasks. It also and considers tasks priorities which cause higher system utilization and lowers deadline miss time. According to the results, it performs very close to optimal schedule of uni-processor systems.Keywords: Computational complexity, Deadline, Feasible scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor systems, Robustness, System utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129925 A Fuzzy Approach for Delay Proportion Differentiated Service
Authors: Mehran Garmehi, Yasser Mansouri
Abstract:
There are two paradigms proposed to provide QoS for Internet applications: Integrated service (IntServ) and Differentiated service (DiffServ).Intserv is not appropriate for large network like Internet. Because is very complex. Therefore, to reduce the complexity of QoS management, DiffServ was introduced to provide QoS within a domain using aggregation of flow and per- class service. In theses networks QoS between classes is constant and it allows low priority traffic to be effected from high priority traffic, which is not suitable. In this paper, we proposed a fuzzy controller, which reduced the effect of low priority class on higher priority ones. Our simulations shows that, our approach reduces the latency dependency of low priority class on higher priority ones, in an effective manner.
Keywords: QoS, Differentiated Service (DiffServ), FuzzyController, Delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287924 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931923 Using the Combined Model of PROMETHEE and Fuzzy Analytic Network Process for Determining Question Weights in Scientific Exams through Data Mining Approach
Authors: Hassan Haleh, Amin Ghaffari, Parisa Farahpour
Abstract:
Need for an appropriate system of evaluating students- educational developments is a key problem to achieve the predefined educational goals. Intensity of the related papers in the last years; that tries to proof or disproof the necessity and adequacy of the students assessment; is the corroborator of this matter. Some of these studies tried to increase the precision of determining question weights in scientific examinations. But in all of them there has been an attempt to adjust the initial question weights while the accuracy and precision of those initial question weights are still under question. Thus In order to increase the precision of the assessment process of students- educational development, the present study tries to propose a new method for determining the initial question weights by considering the factors of questions like: difficulty, importance and complexity; and implementing a combined method of PROMETHEE and fuzzy analytic network process using a data mining approach to improve the model-s inputs. The result of the implemented case study proves the development of performance and precision of the proposed model.Keywords: Assessing students, Analytic network process, Clustering, Data mining, Fuzzy sets, Multi-criteria decision making, and Preference function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582922 CSR of top Portuguese Companies: Relation between Social Performance and Economic Performance
Authors: Afonso, S. C., Fernandes, P. O., Monte, A. P.
Abstract:
Modern times call organizations to have an active role in the social arena, through Corporate Social Responsibility (CSR). The objective of this research was to test the hypothesis that there is a positive relation between social performance and economic performance, and if there is a positive correlation between social performance and financial-economic performance. To test these theories a measure of social performance, based on the Green Book of Commission of the European Community, was used in a group of nineteen Portuguese top companies, listed on the PSI 20 index, through a period of five years, since 2005 to 2009. A clusters analysis was applied to group companies by their social performance and to compare and correlate their economic performance. Results indicate that companies that had a better social performance are not the ones who had a better economic performance, and suggest that the middle path might provide a good relation CSR-Economic performance, as a basis to a sustainable development.Keywords: Corporate Social Responsibility, Economic Performance, Win-Win relationship
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415921 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications
Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo
Abstract:
In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.
Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818