Search results for: echo sounder
10 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17139 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5208 Cardiac Function and Morphological Adaptations in Endurance and Resistance Athletes: Evaluation using a new Method
Authors: K. Hosseini, MD., R. Mazaheri, MD., H.R. Khoddami Vishteh, MD., M.A. Mansournia, MD., H. Angoorani, MD
Abstract:
Background: Tissue Doppler Echocardiography (TDE) assesses diastolic function more accurately than routine pulse Doppler echo. Assessment of the effects of dynamic and static exercises on the heart by using TDE can provides new information about the athlete-s heart syndrome. Methods: This study was conducted on 20 elite wrestlers, 14 endurance runners at national level and 21 non-athletes as the control group. Participants underwent two-dimensional echocardiography, standard Doppler and TDE. Results: Wrestlers had the highest left ventricular mass index, enddiastolic inter-ventricular septum thickness and left ventricular Posterior wall thickness. Runners had the highest Left ventricular end-diastolic volume, LV ejection fraction, stroke volume and cardiac output. In TDE, the early diastolic velocity of mitral annulus to the late diastolic velocity ratio in athletic groups was greater than the controls with no significant difference. Conclusion: In spite of cardiac morphological changes in athletes, TDE shows that cardiac diastolic function won-t be adversely affected.Keywords: Tissue Doppler Echocardiography, Diastolic function, Athlete's heart syndrome, Static exercise, Dynamic exercise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16167 Evaluation of Prevalence of the Types of Thyroid Disorders Using Ultrasound and Pathology of One Humped Camel in Iran (Camelus dromedarius)
Authors: M. Yadegari
Abstract:
The thyroid gland is the largest classic endocrine organ that effects many organs of the body and plays a significant role in the process of Metabolism in animals. The aim of this study was to investigate the prevalence of thyroid disorders diagnosed by ultrasound and microscopic Lesions of the thyroid during the slaughter of apparently healthy One Humped Camels (Camelus dromedarius) in Iran. Randomly, 520 male camels (With an age range of 4 to 8 years), were studied in 2012 to 2013. The Camels’ thyroid glands were evaluated by sonographic examination. In both longitudinal and transverse view and then tissue sections were provide and stained with H & E and finally examined by light microscopy. The results obtained indicated the following: hyperplastic goiter (21%), degenerative changes (12%), follicular cysts (8%), follicular atrophy (4%), nodular hyperplasia (3%), adenoma (1%), carcinoma (1%) and simple goiter colloid (1%). Ultrasound evaluation of thyroid gland in adenoma and carcinoma showed enlargement and irregular of the gland, decreased echogenicity, and the heterogeneous thyroid parenchyma. Also, in follicular cysts were observed in the enlarged gland with no echo structures of different sizes and decreased echogenicity as a local or general. In nodular hyperplasia, increase echogenicity and heterogeneous parenchymal were seen. These findings suggest the use of sonography and pathology as a screening test in the diagnosis of complications of thyroid disorders.
Keywords: One humped camel, pathology, sonography, thyroid gland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26096 Challenging the Stereotypes: A Critical Study of Chotti Munda and His Arrow and Sula
Authors: Khushboo Gokani, Renu Josan
Abstract:
Mahasweta Devi and Toni Morrison are the two stalwarts of the Indian English and the Afro-American literature respectively. The writings of these two novelists are authentic and powerful records of the lives of the people because much of their personal experiences have gone into the making of their works. Devi, a representative force of the Indian English literature, is also a social activist working with the tribals of Bihar, Jharkhand, Orissa and West Bengal. Most of her works echo the lives and struggles of the subalterns as is evident in her “best beloved book” Chotti Munda and His Arrow. The novelist focuses on the struggle of the tribals against the colonial and the feudal powers to create their own identity, thereby, embarking on the ideological project of ‘setting the record straight’. The Nobel Laureate Toni Morrison, on the other hand, brings to the fore the crucial issues of gender, race and class in many of her significant works. In one of her representative works Sula, the protagonist emerges as a non- conformist and directly confronts the notion of a ‘good woman’ nurtured by the community of the Blacks. In addition to this, the struggle of the Blacks against the White domination, also become an important theme of the text. The thrust of the paper lies in making a critical analysis of the portrayal of the heroic attempts of the subaltern protagonist and the artistic endeavor of the novelists in challenging the stereotypes.
Keywords: Subaltern, The Centre And The Periphery, Struggle Of The Muted Groups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36955 Bio-Surfactant Production and Its Application in Microbial EOR
Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi
Abstract:
There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.
Keywords: Bio-surfactant, Bacteria, Interfacial tension, Sand column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27774 Morphological Characteristics and Development of the Estuary Area of Lam River, Vietnam
Authors: Hai Nguyen Tien
Abstract:
On the basis of the structure of alluvial sediments explained by echo sounding data and remote sensing images, the following results can be given: The estuary of Lam river from Ben Thuy Bridge (original word: Bến Thủy) to Cua Hoi (original word: Cửa Hội) is divided into three channels (location is calculated according to the river bank on the Nghe An Province, original word: Nghệ An): i) channel I (from Ben Thuy Bridge to Hung Hoa, original word: Hưng Hòa) is the branching river; ii) channel II (from Hung Hoa to Nghi Thai, original word: Nghi Thái)is a channel develops in a meandering direction with a concave side toward Ha Tinh Province (Hà Tĩnh); iii) channel III (from Nghi Thai to Cua Hoi)is a channel develops in a meandering direction with a concave side toward Nghe An province.This estuary area is formed in the period from after the sea level dropped below 0m (current water level) to the present: i) Channel II developed moving towards Ha Tinh Province; ii) Channel III developed moving towards Nghe An Province; iii) In channel I, a second river branch is formed because the flow of river cuts through the Hong Lam- Hong Nhat mudflat (original word: Hồng Lam -Hồng Nhất),at the same time creating an island.Morphological characteristics of the estuary area of Lam River are the main result of erosion and deposition activities corresponding to two water levels: the water level is about 2 m lower than the current water level and the current water level.Characteristics of the sediment layers on the riverbed in the estuary can be used to determine the sea levels in Late Holocene to the present.
Keywords: Lam River, development, Cua Hoi, river morphology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4273 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10042 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.
Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301