Search results for: J.W. Xiang
7 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Based on the DCS-DCSOMP Algorithm
Authors: Linyu Wang, Furui Huo, Jianhong Xiang
Abstract:
The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit (SOMP) algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low Signal-to-Noise Ratio (SNR) stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.
Keywords: OFDM, doubly selective, channel estimation, compressed sensing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3726 Patient Perspectives on Telehealth during the Pandemic in the United States
Authors: Manal Sultan Alhussein, Xiang Michelle Liu
Abstract:
Telehealth is an advanced technology using digital information and telecommunication facilities that provide access to health services from a distance. It slows the transmission factor of COVID-19, especially for elderly patients and patients with chronic diseases during the pandemic. Therefore, understanding patient perspectives on telehealth services and the factors impacting their option of telehealth service will shed light on the measures that healthcare providers can take to improve the quality of telehealth services. This study aimed to evaluate perceptions of telehealth services among different patient groups and explore various aspects of telehealth utilization in the United States during the COVID-19 pandemic. An online survey distributed via social media platforms was used to collect research data. In addition to the descriptive statistics, both correlation and regression analyses were conducted to test research hypotheses. The empirical results highlighted that the factors such as accessibility to telehealth services and the type of specialty clinics that the patients required play important roles in the effectiveness of telehealth services they received. However, the results found that patients’ waiting time to receive telehealth services and their annual income did not significantly influence their desire to select receiving healthcare services via telehealth. The limitations of the study and future research directions are discussed.
Keywords: Telehealth, patient satisfaction, pandemic, healthcare, remote patient monitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7295 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar
Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi
Abstract:
With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study presents a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.
Keywords: Structural integrity, highways, pavement evaluation, asphalt concrete pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.
Keywords: telemedicine, fetal electrocardiogram, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5113 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
High pressure carbon dioxide (CO2) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO2 concentration, CO2 loading, reboiler power supply and regeneration heat duty to choose the most efficient solution in terms of CO2 removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that PZ in addition to the mixture of PZ and monoethanolamine (MEA) demand the highest regeneration heat duty compared with other studied single and blended amine solutions respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO2 content in the outlet gas, rich-CO2 loading and regeneration heat duty.
Keywords: Absorption, amine solutions, Aspen HYSYS, CO2 loading, piperazine, regeneration heat duty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6152 Acceleration-Based Motion Model for Visual SLAM
Authors: Daohong Yang, Xiang Zhang, Wanting Zhou, Lei Li
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that gathers information about the surrounding environment to ascertain its own position and create a map. It is widely used in computer vision, robotics, and various other fields. Many visual SLAM systems, such as OBSLAM3, utilize a constant velocity motion model. The utilization of this model facilitates the determination of the initial pose of the current frame, thereby enhancing the efficiency and precision of feature matching. However, it is often difficult to satisfy the constant velocity motion model in actual situations. This can result in a significant deviation between the obtained initial pose and the true value, leading to errors in nonlinear optimization results. Therefore, this paper proposes a motion model based on acceleration that can be applied to most SLAM systems. To provide a more accurate description of the camera pose acceleration, we separate the pose transformation matrix into its rotation matrix and translation vector components. The rotation matrix is now represented by a rotation vector. We assume that, over a short period, the changes in rotating angular velocity and translation vector remain constant. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of the constant velocity model is analyzed theoretically. Finally, we apply our proposed approach to the ORBSLAM3 system and evaluate two sets of sequences from the TUM datasets. The results show that our proposed method has a more accurate initial pose estimation, resulting in an improvement of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on the two test sequences, respectively.
Keywords: Error estimation, constant acceleration motion model, pose estimation, visual SLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521 A Robust Visual SLAM for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.
Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180