Search results for: Game Classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1331

Search results for: Game Classification

821 A New History Based Method to Handle the Recurring Concept Shifts in Data Streams

Authors: Hossein Morshedlou, Ahmad Abdollahzade Barforoush

Abstract:

Recent developments in storage technology and networking architectures have made it possible for broad areas of applications to rely on data streams for quick response and accurate decision making. Data streams are generated from events of real world so existence of associations, which are among the occurrence of these events in real world, among concepts of data streams is logical. Extraction of these hidden associations can be useful for prediction of subsequent concepts in concept shifting data streams. In this paper we present a new method for learning association among concepts of data stream and prediction of what the next concept will be. Knowing the next concept, an informed update of data model will be possible. The results of conducted experiments show that the proposed method is proper for classification of concept shifting data streams.

Keywords: Data Stream, Classification, Concept Shift, History.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
820 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
819 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
818 Investigation on Feature Extraction and Classification of Medical Images

Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..

Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
817 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
816 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: Case-based reasoning, decision tree, stock selection, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
815 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
814 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.

Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793
813 Video Classification by Partitioned Frequency Spectra of Repeating Movements

Authors: Kahraman Ayyildiz, Stefan Conrad

Abstract:

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
812 Three-player Domineering

Authors: Alessandro Cincotti

Abstract:

Domineering is a classic two-player combinatorial game usually played on a rectangular board. Three-player Domineering is the three-player version of Domineering played on a three dimensional board. Experimental results are presented for x×y ×z boards with x + y + z < 10 and x, y, z ≥ 2. Also, some theoretical results are shown for 2 × 2 × n board with n even and n ≥ 4.

Keywords: Combinatorial games, Domineering, three-playergames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
811 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.

Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
810 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
809 Estimation Model of Dry Docking Duration Using Data Mining

Authors: Isti Surjandari, Riara Novita

Abstract:

Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.

Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
808 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
807 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez

Abstract:

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
806 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: Balance sheet indicators, Bancassurance, business models, ward algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
805 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
804 Hybrid Neural Network Methods for Lithology Identification in the Algerian Sahara

Authors: S. Chikhi, M. Batouche, H. Shout

Abstract:

In this paper, we combine a probabilistic neural method with radial-bias functions in order to construct the lithofacies of the wells DF01, DF02 and DF03 situated in the Triassic province of Algeria (Sahara). Lithofacies is a crucial problem in reservoir characterization. Our objective is to facilitate the experts' work in geological domain and to allow them to obtain quickly the structure and the nature of lands around the drilling. This study intends to design a tool that helps automatic deduction from numerical data. We used a probabilistic formalism to enhance the classification process initiated by a Self-Organized Map procedure. Our system gives lithofacies, from well-log data, of the concerned reservoir wells in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits.

Keywords: Classification, Lithofacies, Probabilistic formalism, Reservoir characterization, Well-log data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
803 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
802 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
801 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
800 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

Authors: Pavel Y. Tabakov, Kevin Duffy

Abstract:

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

Keywords: Classification, clustering, data minig, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
799 Error-Robust Nature of Genome Profiling Applied for Clustering of Species Demonstrated by Computer Simulation

Authors: Shamim Ahmed Koichi Nishigaki

Abstract:

Genome profiling (GP), a genotype based technology, which exploits random PCR and temperature gradient gel electrophoresis, has been successful in identification/classification of organisms. In this technology, spiddos (Species identification dots) and PaSS (Pattern similarity score) were employed for measuring the closeness (or distance) between genomes. Based on the closeness (PaSS), we can buildup phylogenetic trees of the organisms. We noticed that the topology of the tree is rather robust against the experimental fluctuation conveyed by spiddos. This fact was confirmed quantitatively in this study by computer-simulation, providing the limit of the reliability of this highly powerful methodology. As a result, we could demonstrate the effectiveness of the GP approach for identification/classification of organisms.

Keywords: Fluctuation, Genome profiling (GP), Pattern similarity score (PaSS), Robustness, Spiddos-shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
798 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: Segmentation, road signs, characters, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
797 Emotion Recognition Using Neural Network: A Comparative Study

Authors: Nermine Ahmed Hendy, Hania Farag

Abstract:

Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time

Keywords: Classification, emotion recognition, features extraction, feature selection, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4698
796 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
795 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper presents a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network-based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation on an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: Attention Multiple Instance Learning, Multiple Instance Learning, transfer learning, histopathological slides, cancer tissue classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221
794 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
793 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes

Authors: Achraf El Allali, John R. Rose

Abstract:

A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.

Keywords: Coding Non-coding Classification, Entropy, GeneRecognition, Mutual Information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
792 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82