Three-player Domineering

Alessandro Cincotti

x 1

2

Abstract—Domineering is a classic two-player combinatorial game usually played on a rectangular board. Three-player Domineering is the three-player version of Domineering played on a three dimensional board. Experimental results are presented for $x \times y \times z$ boards with x + y + z < 10 and $x, y, z \ge 2$. Also, some theoretical results are shown for $2 \times 2 \times n$ board with n even and $n \ge 4$.

Keywords—Combinatorial games, Domineering, three-player games.

I. INTRODUCTION

T HE game of Domineering, also known as Crosscram and Dominoes, is a typical two-player game with perfect information, proposed around 1973 by Göran Andersson [10], [9], [2]. The two players, usually denoted by Vertical and Horizontal, take turns in placing dominoes $(2 \times 1 \text{ tile})$ on a checkerboard. Vertical is only allowed to place its dominoes vertically and Horizontal is only allowed to place its dominoes horizontally on the board. Dominoes are not allowed to overlap and the first player that cannot find a place for one of its dominoes loses. After a time the remaining space may separate into several disconnected regions, and each player must choose into which region to place a domino.

Berlekamp [1] solved the general problem for $2 \times n$ board for odd n. The 8×8 board and many other small boards were recently solved by Breuker, Uiterwijk and van den Herik [3] using a computer search with a good system of transposition tables. Subsequently, Lachmann, Moore, and Rapaport solved the problem for boards of width 2, 3, 5, and 7 and other specific cases [11]. Finally, Bullock solved the 10×10 board [4].

Three-player Domineering is played on a three dimensional board with edges parallel to the x-, y-, and z-axes. We use $x \times y \times z$ to indicate an x by y by z board. Three players, denoted by X, Y, and Z, take turns in cyclic fashion (..., X, Y, Z, X, Y, Z, ...) in placing three dimensional dominoes $(2 \times 1 \times 1 \text{ tile})$ on a three dimensional board. X is only allowed to place its dominoes parallel to the x-axis, Y is only allowed to place its dominoes parallel to the y-axis, and Z is only allowed to place its dominoes parallel to the z-axis. Dominoes are not allowed to overlap and when one of the players cannot find a place for one of its dominoes, he/she leaves the game and the remaining player continue in alternation until one of them is unable to move. Then that player leaves the game and the remaining player is the winner. In other words, the player that is able to make the last move is the winner.

Three-player combinatorial games are difficult to analyze because of *queer* game [12], [5], [6], [7], [8], i.e., games where no player can force a win.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	wins ueer wins ueer wins ueer ueer ueer			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ueer wins ueer wins ueer ueer ueer ueer			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	wins ueer wins ueer ueer ueer ueer			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ueer wins ueer ueer ueer ueer			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	wins ueer ueer ueer ueer			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ueer ueer ueer ueer			
$3 \times 2 \times 3^{*} Queer \qquad Y \text{ wins } \qquad Queer $	ueer ueer ueer			
$3 \times 3 \times 3$ Queer	ueer ueer			
$4 \times 2 \times 2$ Queer	ueer			
$2 \times 4 \times 2^*$ Queer Queer Q $2 \times 2 \times 4^*$ Queer Queer Q $4 \times 3 \times 2$ Queer Queer Q				
$2 \times 2 \times 4^*$ Queer Que	Queer			
$4 \times 3 \times 2$ Oueer Oueer C	Queer			
Thomas Queen Queen Q	Queer			
$2 \times 4 \times 3^*$ Queer Queer Q	Queer			
$3 \times 2 \times 4^*$ Queer Queer Q	ueer			
$4 \times 2 \times 3$ Queer Queer Q	ueer			
$3 \times 4 \times 2^*$ Queer Queer Q	Queer			
$2 \times 3 \times 4^*$ Queer Queer Q	Queer			
$5 \times 2 \times 2$ Queer Queer Q	Queer Queer Queer			
$2 \times 5 \times 2^*$ Queer Queer Q	Queer			
$2 \times 2 \times 5^*$ Queer Queer Q	Queer			

TABLE I

OUTCOMES OF THREE-PLAYER DOMINEERING ON SMALL BOARDS

Fig. 1. The $2\times 2\times z$ board represented by the union of two rectangular boards.

II. MAIN RESULTS

Table I shows the results obtained using an exhaustive search algorithm for $x \times y \times z$ boards with x + y + z < 10 and $x, y, z \ge 2$. The entries with * can be obtained by symmetry from the previous cases.

Theorem 1: Let $2 \times 2 \times z$ be a three-dimensional board with z even. If X starts the game, then X does not have a winning strategy.

Proof: Because of the difficulties of playing in three dimensions, we will represent the three dimensional board by the union of two rectangular boards as shown in Fig. 1. Each position will be indicated by a tern

(a, b, c)

The author is with the School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan, (phone: +81-761-51-1293; email: cincotti@jaist.ac.jp).

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:2, No:10, 2008

х	У	1	2	3	4	5	6	7	8
1	2		Y	Y		Х	Y	Y	Х
2	2	Ζ	Ζ	Ζ	Ζ	Х			Х
1	1	Х	Y	Y	Х		Y	Y	
2	1	Х			Х	Ζ	Ζ	Ζ	Ζ

Fig. 2. The $2 \times 2 \times 8$ board where X does not have a winning strategy when X starts the game.

where $1 \le a \le 2$, $1 \le b \le 2$, $1 \le c \le z$. A move for X is

a move for Y is

(a, 1|2, c)

and a move for Z is

$$[a, b, d|d+1)$$

where $a, b \in \{1, 2\}, c \in \{1, 2, \dots, z\}, d \in \{1, 2, \dots, z-1\}.$ Whenever X moves into

(1|2, b, c)

Y and Z will reply as follows:

• If b = 1 and c is odd, then Y moves into

(1,1|2,c+1)

and Z moves into

$$(2, 2, c|c+1)$$

• If b = 1 and c is even, then Y moves into

$$(1,1|2,c-1)$$

and Z moves into

(2, 2, c - 1|c)

• If b = 2 and c is odd, then Y moves into

(1,1|2,c+1)

and Z moves into

$$(2, 1, c|c+1)$$

• If b = 2 and c is even, then Y moves into

(

$$1, 1|2, c-1)$$

and Z moves into

$$(2, 1, c - 1|c)$$

An example is shown in Fig. 2.

Theorem 2: Let $2 \times 2 \times z$ be a three-dimensional board with z even. If Y starts the game, then Y does not have a winning strategy.

Proof: Whenever Y moves into

Z and X will reply as follows:

Fig. 3. The $2 \times 2 \times 8$ board where Y does not have a winning strategy when Y starts the game.

• If a = 1 and c is odd, then Z moves into

(2, 1, c | c + 1)

and X moves into

$$(1|2, 2, c+1)$$

• If a = 1 and c is even, then Z moves into

$$(2, 1, c - 1|c)$$

and X moves into

$$(1|2, 2, c-1)$$

• If
$$a = 2$$
 and c is odd, then Z moves into

(1, 1, c | c + 1)

and X moves into

$$(1|2, 2, c+1)$$

• If a = 2 and c is even, then Z moves into

$$(1, 1, c - 1|c)$$

and X moves into

$$(1|2, 2, c-1)$$

An example is shown in Fig. 3.

Theorem 3: Let $2 \times 2 \times z$ be a three-dimensional board with z even. If X starts the game, then Y does not have a winning strategy.

Proof: In the beginning, X move into

$$(1|2, 1, \bar{c})$$

with c odd. Whenever Y moves into

with $c \neq \overline{c}$, Z and X will reply with the same strategy in Theorem 2. If Y moves into either

$$(1,1|2,\overline{c}+1)$$

 $(2,1|2,\overline{c}+1)$

then Z moves respectively into either

 $(2, 2, \bar{c}|\bar{c}+1)$

 $(1, 2, \bar{c}|\bar{c}+1)$

or

or

Fig. 4. X does not have a winning strategy when Z starts the game (First case).

Successively, X and Z can continue with the same strategy used in the beginning of the game.

Theorem 4: Let $2 \times 2 \times z$ be a three-dimensional board with z even. If Z starts the game, then X does not have a winning strategy.

Proof: In the beginning, Z move into

 $(1, 1, \bar{c}|\bar{c}+1)$

with c odd. Whenever X moves into

(1|2, b, c)

with $c \neq \overline{c}, \overline{c} + 1$, Y and Z will reply with the same strategy in Theorem 1. If X moves into either

 $(1|2, 2, \bar{c})$

or

$$(1|2, 2, \bar{c}+1)$$

then Y moves respectively into either

 $(2,1|2,\overline{c}+1)$

or

Dpen Science Index, Mathematical and Computational Sciences Vol:2, No:10, 2008 publications.waset.org/7448.pdf

$$(2, 1|2, \bar{c})$$

Successively, Z and X can continue with the same strategy used in the beginning of the game.

Theorem 5: Let $2 \times 2 \times z$ be a three-dimensional board with z even and $z \ge 4$. If Y starts the game, then X does not have a winning strategy.

Proof: In the beginning, Y moves into

(2,1|2,1)

and Z moves into (2, 1, 2|3). Whenever X moves into

(1|2, b, c)

with c > 4, Y and Z will reply with the same strategy in Theorem 1. If X moves into

(1|2, b, c)

with $c \leq 4$, then 4 different cases are possible:

1) If X moves into

(1|2, 2, 2)

then Y and Z will reply as shown in Fig. 4 and after X does not have a winning strategy by Theorem 1.

2) If X moves into

(1|2, 2, 3)

Fig. 5. X does not have a winning strategy when Z starts the game (Second case).

Fig. 6. X does not have a winning strategy when Z starts the game (Third case).

then Y and Z will reply as shown in Fig. 5 and after X does not have a winning strategy by Theorem 1.3) If X moves into

(1|2, 1, 4)

then Y and Z will reply as shown in Fig. 6 and after X does not have a winning strategy by Theorem 1.

4) If X moves into

(1|2, 2, 4)

then Y and Z will reply as shown in Fig. 7. Successively, if X move into

(1|2, 1, 4)

then Y can reply into

and X does not have a winning strategy by Theorem 4.

Theorem 6: Let $2 \times 2 \times z$ be a three-dimensional board with z even and $z \ge 4$. If Z starts the game, then Y does not have a winning strategy.

Proof: In the beginning, Z moves into

(1|2,1,1)

and X moves into

717

Fig. 7. X does not have a winning strategy when ${\rm Z}$ starts the game (Fourth case).

Fig. 8. Y does not have a winning strategy when Z starts the game (First case).

Fig. 9. Y does not have a winning strategy when Z starts the game (Second case).

Whenever Y moves into

(a, 1|2, c)

with c > 4, Z and X will reply with the same strategy in Theorem 2. If Y moves into

(a, 1|2, c)

with $c \leq 4$, then 4 different cases are possible:

1) If Y moves into

(1,1|2,2)

then Z and X will reply as shown in Fig. 8 and after Y does not have a winning strategy by Theorem 2.

2) If Y moves into (1, 1|2, 3)

then Z and X will reply as shown in Fig. 9 and after Y does not have a winning strategy by Theorem 2.

3) If Y moves into

(2,1|2,4)

then Z and X will reply as shown in Fig. 10 and after Y does not have a winning strategy by Theorem 2.4) If Y moves into

(1,1|2,4)

Fig. 10. Y does not have a winning strategy when Z starts the game (Third case).

Fig. 11. Y does not have a winning strategy when Z starts the game (Fourth case).

then Z and X will reply as shown in Fig. 11. Successively, if Y move into

(2,1|2,4)

then Z can reply into

(1, 1, 2|3)

and Y does not have a winning strategy by Theorem 3.

As a consequence of the previous 6 theorems, the following corollary holds.

Corollary 1: Let $2 \times 2 \times z$ be a three dimensional board with z even and $z \ge 4$. Then, either Z has a winning strategy or the game is queer.

Experimental results so far obtained seem indicate that the game is always queer but further efforts are necessary for a formal proof.

ACKNOWLEDGMENT

This research was financially supported by NEC C&C Foundation.

REFERENCES

- E.R. Berlekamp, "Blockbusting and Domineering," Journal of Combinatorial Theory Ser. A, vol. 49, pp. 67-116, 1988.
- [2] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning way for your mathematical plays, 2nd ed. Natick, Massachusetts: A K Peters, 2001.
- [3] D.M. Breuker, J.W.H.M. Uiterwijk, H.J. van den Herik, "Solving 8 × 8 Domineering," *Theoretical Computer Science*, vol. 230, pp. 195-206, 2000.
- [4] N. Bullock, "Domineering: Solving Large Combinatorial Search Spaces," *ICGA Journal*, vol. 25, no. 2, pp. 67-84, 2002.
- [5] A. Cincotti, "Three-player partizan games," *Theoretical Computer Science*, vol. 332, pp. 367-389, 2005.
- [6] A. Cincotti, "The Game of Maundy Block," Proceedings of World Academy of Science, Engineering and Technology, vol. 26, pp. 74-77, 2007.
- [7] A. Cincotti, "Three-player Hackenbush played on strings is NPcomplete," *Proceedings of the IAENG International Conference on Computer Science (ICCS'08)*, pp. 226-230, 2008.
- [8] A. Cincotti, "The Game of Cutblock," INTEGERS: Electronic Journal of Combinatorial Number Theory, vol. 8, #G06, 2008.
- [9] J. H. Conway, On Numbers and Games, 2nd ed. Natick, Massachusetts: A K Peters, 2001.
- [10] M. Gardner, "Mathematical games," *Scientific American*, vol. 230, pp. 106-108, 1974.
- [11] M. Lachmann, C. Moore, I. Rapaport, "Who Wins Domineering on Rectangular Boards," in *More Games of No Chance*, R.J. Nowakowski, Ed. Cambridge University Press, 2002, pp. 307-315.
- [12] J. Propp, "Three-player impartial games," *Theoretical Computer Science*, vol. 233, pp. 263-278, 2000.