Search results for: Financial data analysis
13354 Critical Factors to Company Success in the Construction Industry
Abstract:
Achieving success is a highly critical issue for the companies to survive in a competitive business environment. The construction industry is also an area where there is strong competition due to a large number of construction contractors. There have been many factors such as qualified employees, quality workmanship and financial management that can lead to company success in the construction industry. The aim of this study was to investigate the critical factors leading to construction company success. Within this context, a survey was carried out among 40 Turkish construction companies which are located in the Northwest region of Turkey. In this survey, top-level managers and owners of the companies were interviewed. The interviews took place over a five month period between January and May 2007. Finally, the ranking of the critical success factors has been determined by using the Simple Multi Attribute Rating Technique (SMART). Based on the results, business management, financial conditions and owner/manager characteristics were determined as the most important factors to company success.Keywords: Company success, construction, organization, success factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980813353 Data and Control Flow Analysis of VDMµ Specifications
Authors: Mubina Nazmeen, Iram Rubab
Abstract:
Formal Specification languages are being widely used for system specification and testing. Highly critical systems such as real time systems, avionics, and medical systems are represented using Formal specification languages. Formal specifications based testing is mostly performed using black box testing approaches thus testing only the set of inputs and outputs of the system. The formal specification language such as VDMµ can be used for white box testing as they provide enough constructs as any other high level programming language. In this work, we perform data and control flow analysis of VDMµ class specifications. The proposed work is discussed with an example of SavingAccount.Keywords: VDM-SL, VDMµ, data flow graph, control flowgraph, testing, formal specification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437713352 The Role of Organizational Culture in Facilitating Employee Job Satisfaction in Emerald Group
Authors: Mohamed Haffar, Muhammad Abdul Aziz, Ahmad Ghoneim
Abstract:
The importance of having a good organizational culture that supports employee job satisfaction has fascinated both the business and academic world because of a tantalizing promise: culture can be fundamental to the enhancement of financial performance. This promise has led to growing interest for both researchers and practitioners in attempting to understand the influence of organizational culture on employees’ satisfaction and organizational performance. Even though the relationship between organizational culture and employee job satisfaction have gained attention in the literature, the majority of studies have been conducted within manufacturing organizations and tend to oversee the impact of culture on employee job satisfaction in a service-based environment. Thus, the main driving force of this study was to explore the role of organizational culture types in facilitating employee job satisfaction at Emerald Publishing Group. Interviews qualitative data analysis indicated that Emerald’s culture dominated by adhocracy and clan culture values. In addition, the findings provided evidence, which demonstrated that group and adhocracy organizational culture types play key roles in facilitating employee job satisfaction in a service-based environment.
Keywords: Employee satisfaction, organizational culture, performance, service based environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149413351 Corporate Governance Practices and Audit Quality: An Empirical Study of the Listed Companies in Egypt
Authors: Mohamed Moustafa Soliman, Mohamed Abd Elsalam
Abstract:
Recent financial international scandals around the world have led to a number of investigations into the effectiveness of corporate governance practices and audit quality. Although evidence of corporate governance practices and audit quality exists from developed economies, very scanty studies have been conducted in Egypt where corporate governance is just evolving. Therefore, this study provides evidence on the effectiveness of corporate governance practices and audit quality from a developing country. The data for analysis are gathered from the top 50 most active companies in the Egyptian Stock Exchange, covering the three year period 2007-2009. Logistic regression was used in investigating the questions that were raised in the study. Findings from the study show that board independence; CEO duality and audit committees significantly have relationship with audit quality. The results also, indicate that institutional investor and managerial ownership have no significantly relationship with audit quality. Evidence also exist that size of the company; complexity and business leverage are important factors in audit quality for companies quoted on the Egypt Stock Exchange.
Keywords: Corporate governance, Boards of directors, corporate ownership, Audit Committees, Audit quality, and Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392313350 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility and overhead & profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.
Keywords: Construction cost factors, neural networks, roadworks, Zambian Construction Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382313349 An Exploratory Study Regarding the Effects of Auditor Switch, Auditee’s Industry, and Auditee’s Location on Audit Fees in Australia
Authors: Ashkan Mirzay Fashami
Abstract:
This study examines the effects of auditor switch, auditee’s industry, and auditee’s location on audit fees in Australia. It uses fee data of Australian Securities Exchange 500 companies, considering all industry classifications throughout the country from 2006 until 2016. Main findings show that auditor switch does not affect audit fees. However, auditee’s industry affects audit fees. This effect occurs in information technology, financials, energy, and materials sectors among the top 500 companies. Financials, energy, and materials sectors face a fee rise, whereas information technology has a fee cut. The extent of fee changes is different among various industries, wherein the financial sector has the highest increase. Further, auditee’s location affects audit fees. Top 500 companies in Hobart, Perth, and Brisbane face a fee reduction, wherein the highest cut is in Hobart. Further analysis suggests that the Australian audit market is being increasingly concentrated in the hands of the Big Four audit firms.
Keywords: Audit fee, auditor switch, Australia, industry, location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92813348 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.
Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69413347 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis
Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht
Abstract:
With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168013346 Using Data Mining for Learning and Clustering FCM
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian
Abstract:
Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201513345 A Safety Analysis Method for Multi-Agent Systems
Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller
Abstract:
Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.Keywords: Multi-agent system, safety analysis, safety model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108613344 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155413343 Simultaneous Clustering and Feature Selection Method for Gene Expression Data
Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar
Abstract:
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.
Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196613342 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident
Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen
Abstract:
In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.
Keywords: RASCAL, UF6, Safety, Hydrogen fluoride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86913341 Multi-labeled Data Expressed by a Set of Labels
Authors: Tetsuya Furukawa, Masahiro Kuzunishi
Abstract:
Collected data must be organized to be utilized efficiently, and hierarchical classification of data is efficient approach to organize data. When data is classified to multiple categories or annotated with a set of labels, users request multi-labeled data by giving a set of labels. There are several interpretations of the data expressed by a set of labels. This paper discusses which data is expressed by a set of labels by introducing orders for sets of labels and shows that there are four types of orders, which are characterized by whether the labels of expressed data includes every label of the given set of labels within the range of the set. Desirable properties of the orders, data is also expressed by the higher set of labels and different sets of labels express different data, are discussed for the orders.
Keywords: Classification Hierarchies, Multi-labeled Data, Multiple Classificaiton, Orders of Sets of Labels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130313340 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.
Keywords: Correlation coefficients, displacement effect, gender difference, multivariate analysis technique, regression coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216913339 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156213338 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.
Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106013337 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.
Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207713336 Analysis of Road Repairs in Undermined Areas
Authors: Tomáš Seidler, Marek Mihola, Denisa Cihlarova
Abstract:
The article presents analysis results of maps of expected subsidence in undermined areas for road repair management. The analysis was done in the area of Karvina district in the Czech Republic, including undermined areas with ongoing deep mining activities or finished deep mining in years 2003 - 2009. The article discusses the possibilities of local road maintenance authorities to determine areas that will need most repairs in the future with limited data available. Using the expected subsidence maps new map of surface curvature was calculated. Combined with road maps and historical data about repairs the result came for five main categories of undermined areas, proving very simple tool for management.Keywords: GIS, Map of Subsidence, Road, Undermined Area
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132313335 Exit Strategies from The Global Crisis
Authors: Petr Teply
Abstract:
While the form of crises may change, their essence remains the same (such as a cycle of abundant liquidity, rapid credit growth, and a low-inflation environment followed by an asset-price bubble). The current market turbulence began in mid-2000s when the US economy shifted to imbalanced both internal and external macroeconomic positions. We see two key causes of these problems – loose US monetary policy in early 2000s and US government guarantees issued on the securities by government-sponsored enterprises what was further fueled by financial innovations such as structured credit products. We have discovered both negative and positive lessons deriving from this crisis and divided the negative lessons into three groups: financial products and valuation, processes and business models, and strategic issues. Moreover, we address key risk management lessons and exit strategies derived from the current crisis and recommend policies that should help diminish the negative impact of future potential crises.Keywords: exist strategy, global crisis, risk management, corporate governance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208413334 International Comparative Study of International Financial Reporting Standards Adoption and Earnings Quality: Effects of Differences in Accounting Standards, Industry Category, and Country Characteristics
Authors: Ichiro Mukai
Abstract:
The purpose of this study is to investigate whether firms applying International Financial Reporting Standards (IFRS), provide high-quality and comparable earnings information that is useful for decision making of information users relative to firms applying local Generally Accepted Accounting Principles (GAAP). Focus is placed on the earnings quality of listed firms in several developed countries: Australia, Canada, France, Germany, Japan, the United Kingdom (UK), and the United States (US). Except for Japan and the US, the adoption of IFRS is mandatory for listed firms in these countries. In Japan, the application of IFRS is allowed for specific listed firms. In the US, the foreign firms listed on the US securities market are permitted to apply IFRS but the listed domestic firms are prohibited from doing so. In this paper, the differences in earnings quality are compared between firms applying local GAAP and those applying IFRS in each country and industry category, and the reasons of differences in earnings quality are analyzed using various factors. The results show that, although the earnings quality of firms applying IFRS is higher than that of firms applying local GAAP, this varies with country and industry category. Thus, even if a single set of global accounting standards is used for all listed firms worldwide, it is difficult to establish comparability of financial information among global firms. These findings imply that various circumstances surrounding firms, industries, and countries etc. influence business operations and affect the differences in earnings quality.
Keywords: Accruals, earnings quality, IFRS, information comparability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76513333 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Crops
Authors: M. M. Ali, Ahmed Al-Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed a new imagebased non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. The plants were grown on a nutrient solution containing different P concentrations, e.g. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P). After 7 weeks of treatment, the plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. These data were further used in linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using leaf image and morphological data. Our proposed nondestructive imaging method is precise in estimating P requirements of different crop species.Keywords: Image-based techniques, leaf area, leaf P contents, linear discriminant analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164813332 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195413331 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.
Authors: Qasim M. Kriri
Abstract:
Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.
Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290713330 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies
Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan
Abstract:
The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156913329 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.
Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92713328 A Formulation of the Latent Class Vector Model for Pairwise Data
Authors: Tomoya Okubo, Kuninori Nakamura, Shin-ichi Mayekawa
Abstract:
In this research, a latent class vector model for pairwise data is formulated. As compared to the basic vector model, this model yields consistent estimates of the parameters since the number of parameters to be estimated does not increase with the number of subjects. The result of the analysis reveals that the model was stable and could classify each subject to the latent classes representing the typical scales used by these subjects.
Keywords: finite mixture models, latent class analysis, Thrustone's paired comparison method, vector model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121413327 Detecting Circles in Image Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: Image processing, median filter, projection, scalespace, segmentation, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183213326 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region
Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus
Abstract:
This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189013325 UEFA Super Cup: Economic Effects on Georgian Economy
Authors: Giorgi Bregadze
Abstract:
Tourism is the most viable and sustainable economic development option for Georgia and one of the main sources of foreign exchange earnings. Events are considered as one of the most effective ways to attract foreign visitors to the country, and, recently, the government of Georgia has begun investing in this sector very actively. This article stresses the necessity of research based economic policy in the tourism sector. In this regard, it is of paramount importance to measure the economic effects of the events which are subsidized by taxpayers’ money. The economic effect of events can be analyzed from two perspectives; financial perspective of the government and perspective of economic effects of the tourism administration. The article emphasizes more realistic and all-inclusive focus of the economic effect analysis of the tourism administration as it concentrates on the income of residents and local businesses, part of which generate tax revenues for the government. The public would like to know what the economic returns to investment are. In this article, the methodology used to describe the economic effects of UEFA Super Cup held in Tbilisi, will help to answer this question. Methodology is based on three main principles and covers three stages. Using the suggested methodology article estimates the direct economic effect of UEFA Super cup on Georgian economy. Although the attempt to make an economic effect analysis of the event was successful in Georgia, some obstacles and insufficiencies were identified during the survey. The article offers several recommendations that will help to refine methodology and improve the accuracy of the data. Furthermore, it is very important to receive the correct standard of measurement of events in Georgia. In this caseü non-ethical acts of measurement which are widely utilized by different research companies will not trigger others to show overestimated effects. It is worth mentioning that to author’s best knowledge, this is the first attempt to measure the economic effect of an event held in Georgia.
Keywords: Biased economic effect analysis, expenditure of local citizens, time switchers and casuals, UEFA super cup.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700