Search results for: Market Prediction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1916

Search results for: Market Prediction.

1496 Main Tendencies of Youth Unemployment and the Regulation Mechanisms for Decreasing Its Rate in Georgia

Authors: Nino Paresashvili, Nino Abesadze

Abstract:

The modern world faces huge challenges. Globalization changed the socio-economic conditions of many countries. The current processes in the global environment have a different impact on countries with different cultures. However, an alleviation of poverty and improvement of living conditions is still the basic challenge for the majority of countries, because much of the population still lives under the official threshold of poverty. It is very important to stimulate youth employment. In order to prepare young people for the labour market, it is essential to provide them with the appropriate professional skills and knowledge. It is necessary to plan efficient activities for decreasing an unemployment rate and for developing the perfect mechanisms for regulation of a labour market. Such planning requires thorough study and analysis of existing reality, as well as development of corresponding mechanisms. Statistical analysis of unemployment is one of the main platforms for regulation of the labour market key mechanisms. The corresponding statistical methods should be used in the study process. Such methods are observation, gathering, grouping, and calculation of the generalized indicators. Unemployment is one of the most severe socioeconomic problems in Georgia. According to the past as well as the current statistics, unemployment rates always have been the most problematic issue to resolve for policy makers. Analytical works towards to the above-mentioned problem will be the basis for the next sustainable steps to solve the main problem. The results of the study showed that the choice of young people is not often due to their inclinations, their interests and the labour market demand. That is why the wrong professional orientation of young people in most cases leads to their unemployment. At the same time, it was shown that there are a number of professions in the labour market with a high demand because of the deficit the appropriate specialties. To achieve healthy competitiveness in youth employment, it is necessary to formulate regional employment programs with taking into account the regional infrastructure specifications.

Keywords: Unemployment. analysis, methods, tendencies, regulation mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
1495 The Relationship between the Architectural Style of the Area’s Residential Waterfront Communities of Bangnoi Floating Bangkhonthi Districts Samut Songkhram Province

Authors: Kunyaphat Thanakunwutthirot

Abstract:

Bangnoi Floating Market located at Bangkhonthi Districts Samut Songkhram Province is a valuable architectural market. The lifestyle of the community's relationship with the living space and the relationship between the architectural style of the area's residential waterfront communities of Bangnoi Floating Bangkhonthi Districts Samut Songkhram Province, which deserves to be preserved. Therefore, this research it helps to know the value of the architectural style of the area's residential waterfront communities of Bangnoi Floating Bangkhonthi Districts SamutSongkhram Province, which deserves to be preserved.

Keywords: Bangnoi Floating Market, floor plan of riverside community architecture, riverside architectural identity, style of riverside community architecture utility space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1494 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems

Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu

Abstract:

Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.

Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
1493 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
1492 Emerging VC Industry: Do Market Expectations Play the Most Important Role in Project Selection? Evidence on Russian Data

Authors: I. Rodionov, A. Semenov, E. Gosteva, O. Sokolova

Abstract:

The venture capital becomes more and more advanced and effective source of the innovation project financing, connected with a high-risk level. In the developed countries, it plays a key role in transforming innovation projects into successful businesses and creating the prosperity of the modern economy. In Russia, there are many necessary preconditions for creation of the effective venture investment system: the network of the public institutes for innovation financing operates; there is a significant number of the small and medium-sized enterprises, capable to sell production with good market potential. However, the current system does not confirm the necessary level of efficiency in practice that can be substantially explained by the absence of the accurate plan of action to form the national venture model and by the lack of experience of successful venture deals with profitable exits in Russian economy. This paper studies the influence of various factors on the venture industry development by the example of the IT-sector in Russia. The choice of the sector is based on the fact, that this segment is the main driver of the venture capital market growth in Russia, and the necessary set of data exists. The size of investment of the second round is used as the dependent variable. To analyse the influence of the previous round, such determinant as the volume of the previous (first) round investments is used. There is also used a dummy variable in regression to examine that the participation of an investor with high reputation and experience in the previous round can influence the size of the next investment round. The regression analysis of short-term interrelations between studied variables reveals prevailing influence of the volume of the first round investments on the venture investments volume of the second round. The most important determinant of the value of the second-round investment is the value of first–round investment, so it means that the most competitive on the Russian market are the start-up teams that can attract more money on the start, and the target market growth is not the factor of crucial importance. This supports the point of view that VC in Russia is driven by endogenous factors and not by exogenous ones that are based on global market growth.

Keywords: Venture industry, venture investment, determinants of the venture sector development, IT-sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1491 Impact Assessment of Credit Policy and Medical Credit Facility (MCF) on Nigerian Private Sector Health Market: Evidence from Eight Nigerian States

Authors: Chimaobi V. Okolo, Kenneth A. Okpala, Johnbull S. Ogboi

Abstract:

A teeming set of doctors that graduated from various universities within and outside Nigeria with the hope of practicing in the country, has their hope shattered because of poor financing, lack of medical equipments and a very weak healthcare systems. Such hydra headed challenges, allows room for quackery which increasingly contributes to the cause of mortality in Nigeria. With a view of reversing the challenges of healthcare delivery and financing in Nigeria, African Health Market for Equity (AHME), a project funded by the Bill and Melinda Gates foundation [With contribution from Department For International Development (DFID)] and currently implemented in three African Countries (Nigeria, Kenya and Ghana) over a Five (5) year period supports the healthcare sector via Medical credit fund (MCF). The study examines the impact of credit policy and medical credit funding on Nigerian health market. Ordinary least square analysis, correlation and granger causality tests were employed to measure the extent to which the Nigerian healthcare market has been influenced. Medical credit fund significantly and positively influenced average monthly turnover of private healthcare providers and Commercial bank’s lending rate had a weak relationship with access to credit/approved loans (13.46%). The programme has so far made 13.91% progress, which is very poor, considering the minimum targeted private health care providers (437.6) and expected number of loan approvals (180.4) for the two years. Medical credit policy in Nigeria should be revised to include private healthcare providers in rural area for more positive impact and increased returns. Good brand advert and sensitization of the programme to stakeholders and health pressure group, and an extension of the programme beyond five years is necessary to better address the issues raised in the study.

Keywords: Credit, health market, medical credit facility, policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1490 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
1489 Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal

Authors: Karima Siham Aoubid, Mohamed Boulemden

Abstract:

The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.

Keywords: Compression, linear prediction analysis, multiresolution analysis, speech signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
1488 Overview of Risk Management in Electricity Markets Using Financial Derivatives

Authors: Aparna Viswanath

Abstract:

Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as nonstorability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.

Keywords: Financial Derivatives, Forward, Futures, Options, Risk Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
1487 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286
1486 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: M. Breška, I. Peruš, V. Stankovski

Abstract:

The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1485 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: Bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
1484 The Application of Regulatory Impact Assessment (RIA) on the Czech Financial Market

Authors: Jana Chvalkovska, Petr Jansky, Petr Teply

Abstract:

The impact assessment in its various forms has recently become a very important part of policy-making and legislation in many different countries. Regulatory impact assessment (RIA) is yet another set of analytical methods deployed in the legislation of the European Union, of many developed countries as well as in many developing ones such as Mexico, Malaysia and Philippines. The aim of this paper is to provide a theoretical background for economic models in regulatory impact assessment and an overview of their application especially on the financial market in the Czech Republic. We found out an inadequate application of these models, what makes room for further research in this field.

Keywords: regulatory impact assessment, RIA, impact evaluation, building societies, Czech Republic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1483 Practical Application of Simulation of Business Processes

Authors: Markéta Gregušová, Vladimíra Schindlerová, Ivana Šajdlerová, Petr Mohyla, Jan Kedroň

Abstract:

Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. To maintain your place among the successful companies on the market today or to come up with a revolutionary business idea is much more difficult than before. Each new or improved method, tool, or approach that can improve the functioning of business processes or even of the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk, which makes it possible to find the optimal parameters of manufacturing processes and systems. The paper presents an example of use of simulation for solution of the bottleneck problem in the concrete company.

Keywords: Practical applications, business processes, systems, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3033
1482 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
1481 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil

Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty

Abstract:

Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.

Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
1480 Modelling Indoor Air Carbon Dioxide (CO2)Concentration using Neural Network

Authors: J-P. Skön, M. Johansson, M. Raatikainen, K. Leiviskä, M. Kolehmainen

Abstract:

The use of neural networks is popular in various building applications such as prediction of heating load, ventilation rate and indoor temperature. Significant is, that only few papers deal with indoor carbon dioxide (CO2) prediction which is a very good indicator of indoor air quality (IAQ). In this study, a data-driven modelling method based on multilayer perceptron network for indoor air carbon dioxide in an apartment building is developed. Temperature and humidity measurements are used as input variables to the network. Motivation for this study derives from the following issues. First, measuring carbon dioxide is expensive and sensors power consumptions is high and secondly, this leads to short operating times of battery-powered sensors. The results show that predicting CO2 concentration based on relative humidity and temperature measurements, is difficult. Therefore, more additional information is needed.

Keywords: Indoor air quality, Modelling, Neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1479 The Use of Voltage Stability Indices and Proposed Instability Prediction to Coordinate with Protection Systems

Authors: R. Leelaruji, V. Knazkins

Abstract:

This paper proposes a methodology for mitigating the occurrence of cascading failure in stressed power systems. The methodology is essentially based on predicting voltage instability in the power system using a voltage stability index and then devising a corrective action in order to increase the voltage stability margin. The paper starts with a brief description of the cascading failure mechanism which is probable root cause of severe blackouts. Then, the voltage instability indices are introduced in order to evaluate stability limit. The aim of the analysis is to assure that the coordination of protection, by adopting load shedding scheme, capable of enhancing performance of the system after the major location of instability is determined. Finally, the proposed method to generate instability prediction is introduced.

Keywords: Blackouts, cascading failure, voltage stability indices, singular value decomposition, load shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1478 An Agri-food Supply Chain Model for Cultivating the Capabilities of Farmers Accessing Market Using Corporate Social Responsibility Program

Authors: W. Sutopo, M. Hisjam, Yuniaristanto

Abstract:

In general, small-scale vegetables farmers experience problems in improving the safety and quality of vegetables supplied to high-class consumers in modern retailers. They also lack of information to access market. The farmers group and/or cooperative (FGC) should be able to assist its members by providing training in handling and packing vegetables and enhancing marketing capabilities to sell commodities to the modern retailers. This study proposes an agri-food supply chain (ASC) model that involves the corporate social responsibility (CSR) activities to cultivate the capabilities of farmers to access market. Multi period ASC model is formulated as Weighted Goal Programming (WGP) to analyze the impacts of CSR programs to empower the FGCs in managing the small-scale vegetables farmers. The results show that the proposed model can be used to determine the priority of programs in order to maximize the four goals to be achieved in the CSR programs.

Keywords: agri-food supply chain, corporate social responsibility, small-scale vegetables farmers, weighted goal programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1477 Impact of Changes in Excise Tax Rate for Strong Alcohol on Consumption and State Revenues in Latvia

Authors: A. Strateičuks, V. Kaže, R. Škapars

Abstract:

State tax revenues in most countries started to decrease during the recession. Government of Latvia decided to compensate the decline by increasing rates of several taxes including excise tax on strong alcohol. The total increase in 2009 constituted 42% and the rate increased from 896€ to 1 266€ for 100l of absolute alcohol. Since then this has had a negative impact on consumption volumes and the split between legal and illegal market. The legal alcohol sales decreased by almost 50% (by volume), consequentially having negative effect on the State revenues from VAT and excise tax. Estimated results for 2010 are indicating 54 million € decrease in VAT, excise tax and other taxes versus 2008 (excise tax -19 million €, VAT -30 million €, other taxes -5 million €). The paper aims to analyze impact of the increase in excise tax on consumption patterns, State revenues and competitiveness of the local companies to draw up proposals for the state authorities regarding more effective tax policies. The analysis reveals a relationship between excise tax rate, illegal alcohol market and State revenues. The results can be used to improve excise tax system and effectiveness in Latvia.

Keywords: State revenues, alcohol market, excise tax, competitiveness, consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1476 The Relationship between Conceptual Organizational Culture and the Level of Tolerance in Employees

Authors: M. Sadoughi, R. Ehsani

Abstract:

The aim of the present study is examining the relationship between conceptual organizational culture and the level of tolerance in employees of Islamic Azad University of Shahre Ghods. This research is a correlational and analytic-descriptive one. The samples included 144 individuals. A 24-item standard questionnaire of organizational culture by Cameron and Queen was used in this study. This questionnaire has six criteria and each criterion includes four items that each item indicates one cultural dimension. Reliability coefficient of this questionnaire was normed using Cronbach's alpha of 0.91. Also, the 25-item questionnaire of tolerance by Conor and Davidson was used. This questionnaire is in a five-degree Likert scale form. It has seven criteria and is designed to measure the power of coping with pressure and threat. It has the needed content reliability and its reliability coefficient is normed using Cronbach's alpha of 0.87. Data were analyzed using Pearson correlation coefficient and multivariable regression. The results showed among various dimensions of organizational culture, there is a positive significant relationship between three dimensions (family, adhocracy, bureaucracy) and tolerance, there is a negative significant relationship between dimension of market and tolerance and components of organizational culture have the power of prediction and explaining the tolerance. In this explanation, the component of family is the most effective and the best predictor of tolerance.

Keywords: Adhocracy, bureaucracy, organizational culture, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
1475 Comparative Approach of Measuring Price Risk on Romanian and International Wheat Market

Authors: Larisa N. Pop, Irina M. Ban

Abstract:

This paper aims to present the main instruments used in the economic literature for measuring the price risk, pointing out on the advantages brought by the conditional variance in this respect. The theoretical approach will be exemplified by elaborating an EGARCH model for the price returns of wheat, both on Romanian and on international market. To our knowledge, no previous empirical research, either on price risk measurement for the Romanian markets or studies that use the ARIMA-EGARCH methodology, have been conducted. After estimating the corresponding models, the paper will compare the estimated conditional variance on the two markets.

Keywords: conditional variance, GARCH models, price risk, volatility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1474 Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm

Authors: Bilal Alatas, Ahmet Arslan

Abstract:

The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.

Keywords: Classification rule mining, data mining, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1473 A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach

Authors: D. A. Farinde

Abstract:

One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.

Keywords: Bank, Bankruptcy, Financial Ratios, Neural Network, Multilayer Perceptron, Predictive Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
1472 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: Artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
1471 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1470 A Comparison between Hybrid and Experimental Extended Polars for the Numerical Prediction of Vertical-Axis Wind Turbine Performance using Blade Element-Momentum Algorithm

Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

A dynamic stall-corrected Blade Element-Momentum algorithm based on a hybrid polar is validated through the comparison with Sandia experimental measurements on a 5-m diameter wind turbine of Troposkien shape. Different dynamic stall models are evaluated. The numerical predictions obtained using the extended aerodynamic coefficients provided by both Sheldal and Klimas and Raciti Castelli et al. are compared to experimental data, determining the potential of the hybrid database for the numerical prediction of vertical-axis wind turbine performances.

Keywords: Darrieus wind turbine, Blade Element-Momentum Theory, extended airfoil database, hybrid database, Sandia 5-m wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
1469 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm

Authors: Latha Parthiban, R. Subramanian

Abstract:

Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.

Keywords: CANFIS, genetic algorithms, heart disease, membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3993
1468 Study of a BVAR(p) Process Applied to U.S. Commodity Market Data

Authors: Jan Sindelar

Abstract:

The paper presents an applied study of a multivariate AR(p) process fitted to daily data from U.S. commodity futures markets with the use of Bayesian statistics. In the first part a detailed description of the methods used is given. In the second part two BVAR models are chosen one with assumption of lognormal, the second with normal distribution of prices conditioned on the parameters. For a comparison two simple benchmark models are chosen that are commonly used in todays Financial Mathematics. The article compares the quality of predictions of all the models, tries to find an adequate rate of forgetting of information and questions the validity of Efficient Market Hypothesis in the semi-strong form.

Keywords: Vector auto-regression, forecasting, financial, Bayesian, efficient markets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
1467 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665