Search results for: Autobiographical memory
19 SMaTTS: Standard Malay Text to Speech System
Authors: Othman O. Khalifa, Zakiah Hanim Ahmad, Teddy Surya Gunawan
Abstract:
This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.Keywords: Natural Language Processing, Text-To-Speech (TTS), Diphone, source filter, low-/ high- level synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197318 The Challenges of Cloud Computing Adoption in Nigeria
Authors: Chapman Eze Nnadozie
Abstract:
Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.
Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179717 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.
Keywords: Deep learning, data mining, gender predication, MOOCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136316 A Preliminary Study of the Reconstruction of Urban Residential Public Space in the Context of the “Top-down” Construction Model in China: Based on Research of TianZiFang District in Shanghai and Residential Space in Hangzhou
Authors: Wang Qiaowei, Gao Yujiang
Abstract:
With the economic growth and rapid urbanization after the reform and openness, some of China's fast-growing cities have demolished former dwellings and built modern residential quarters. The blind, incomplete reference to western modern cities and the one-off construction lacking feedback mechanism have intensified such phenomenon, causing the citizen gradually expanded their living scale with the popularization of car traffic, and the peer-to-peer lifestyle gradually settled. The construction of large-scale commercial centers has caused obstacles to small business around the residential areas, leading to space for residents' interaction has been compressed. At the same time, the advocated Central Business District (CBD) model even leads to the unsatisfactory reconstruction of many historical blocks such as the Hangzhou Southern Song Dynasty Imperial Street. However, the popularity of historical spaces such as Wuzhen and Hongcun also indicates the collective memory and needs of the street space for Chinese residents. The evolution of Shanghai TianZiFang also proves the importance of the motivation of space participants in space construction in the context of the “top-down” construction model in China. In fact, there are frequent occurrences of “reconstruction”, which may redefine the space, in various residential areas. If these activities can be selectively controlled and encouraged, it will be beneficial to activate the public space as well as the residents’ intercourse, so that the traditional Chinese street space can be reconstructed in the context of modern cities.
Keywords: Rapid urbanization, traditional street space, space re-construction, bottom-up design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81215 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.
Keywords: Copper prices, prediction model, neural network, time series forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18714 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.
Keywords: Hybrid electric vehicle, hybrid energy storage, battery state estimation, ate of charge, state of health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105113 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145412 Socio-Cultural Representations through Lived Religions in Dalrymple’s Nine Lives
Authors: Suman
Abstract:
In the continuous interaction between the past and the present that historiography is, each time when history gets re/written, a new representation emerges. This new representation is a reflection of the earlier archives and their interpretations, fragmented remembrances of the past, as well as the reactions to the present. Memory, or lack thereof, and stereotyping generally play a major role in this representation. William Dalrymple’s Nine Lives: In Search of the Sacred in Modern India (2009) is one such written account that sets out to narrate the representations of religion and culture of India and contemporary reactions to it. Dalrymple’s nine saints belong to different castes, sects, religions, and regions. By dealing with their religions and expressions of those religions, and through the lived mysticism of these nine individuals, the book engages with some important issues like class, caste and gender in the contexts provided by historical as well as present India. The paper studies the development of religion and accompanied feeling of religiosity in modern as well as historical contexts through a study of these elements in the book. Since, the language used in creation of texts and the literary texts thus produced create a new reality that questions the stereotypes of the past, and in turn often end up creating new stereotypes or stereotypical representations at times, the paper seeks to actively engage with the text in order to identify and study such stereotypes, along with their changing representations. Through a detailed examination of the book, the paper seeks to unravel whether some socio-cultural stereotypes existed earlier, and whether there is development of new stereotypes from Dalrymple’s point of view as an outsider writing on issues that are deeply rooted in the cultural milieu of the country. For this analysis, the paper takes help from the psycho-literary theories of stereotyping and representation.Keywords: Religion, Representation, Stereotyping, William Dalrymple.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109711 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: Authentication, key-session, security, wireless sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87810 A Secure Auditing Framework for Load Balancing in Cloud Environment
Authors: R. Geetha, T. Padmavathy
Abstract:
Security audit is an important aspect or feature to be considered in cloud service customer. It is basically a certification process to audit the controls that deliver the security requirements. Security audits are conducted by trained and qualified staffs that belong to an independent auditing organization. Security audits must be carried as a standard of security controls. Proper check to be made that the cloud user has a proper reporting and logging facilities with the customer's system and hence ensuring appropriate business and operational flow of data through cloud service. We propose a cloud-based secure auditing framework, which enables confided in power to safely store their mystery information on the semi-believed cloud specialist co-ops, and specifically share their mystery information with a wide scope of information recipient, to diminish the key administration intricacy for power proprietors and information collectors. Unique in relation to past cloud-based information framework, data proprietors transfer their mystery information into cloud utilizing static and dynamic evaluating plan. Another propelled determination is, if any information beneficiary needs individual record to download, the information collector will send the solicitation to the expert. The specialist proprietor has the Access Control. At the off probability, the businessman must impart the primary record to the knowledge collector, acknowledge statistics beneficiary solicitation. Once the acknowledgement for the records is over, the recipient downloads the first record and this record shifting time with date and downloading time with date are monitored by the inspector. In addition to deduplication concept, diminished cloud memory area using dynamic document distribution has been proposed.
Keywords: Cloud computing, cloud storage auditing, data integrity, key exposure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11689 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14918 64 bit Computer Architectures for Space Applications – A study
Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy
Abstract:
The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22497 English Language Learning Strategies Used by University Students: A Case Study of English and Business English Major at Suan Sunandha Rajabhat in Bangkok
Authors: Pranee Pathomchaiwat
Abstract:
The purposes of this research are 1) to study English language learning strategies used by the fourth-year students majoring in English and Business English, 2) to study the English language learning strategies which have an affect on English learning achievement, and 3) to compare the English language learning strategies used by the students majoring in English and Business English. The population and sampling comprise of 139 university students of the Suan Sunandha Rajabhat University. Research instruments are language learning strategies questionnaire which was constructed by the researcher and improved on by three experts and the transcripts that show the results of English learning achievement. The questionnaire includes 1) Language Practice Strategy 2)Memory Strategy 3) Communication Strategy 4)Making an Intelligent Guess or Compensation Strategy 5) Self-discipline in Learning Management Strategy 6) Affective Strategy 7)Self-Monitoring Strategy 8) Self-studySkill Strategy. Statistics used in the study are mean, standard deviation, T-test and One Way ANOVA, Pearson product moment correlation coefficient and Regression Analysis. The results of the findings reveal that the English language learning strategies most frequently used by the students are affective strategy, making an intelligent guess or compensation strategy, self-studyskill strategy and self-monitoring strategy respectively. The aspect of making an intelligent guess or compensation strategy had the most significant affect on English learning achievement. It is found that the English language learning strategies mostly used by the Business English major students and moderately used by the English major students. Their language practice strategies uses were significantly different at the 0.05 level and their communication strategies uses were significantly different at the 0.01 level. In addition, it is found that the poor students and the fair ones most frequently used affective strategy while the good ones most frequently used making an intelligent guess or compensation strategy. KeywordsEnglish language, language learning strategies, English learning achievement, and students majoring in English, Business English. Pranee Pathomchaiwat is an Assistant Professor in Business English Program, Suan Sunandha Rajabhat University, Bangkok, Thailand (e-mail: [email protected]).Keywords: English language, language learning strategies, English learning achievement, students majoring in English, Business English
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38226 Retrieval Augmented Generation against the Machine: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLMs is exciting, such models do have their downsides. LLMs cannot easily expand or revise their memory, and they cannot straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.
Keywords: Retrieval Augmented Generation, Governance Risk and Compliance, Cybersecurity, AI-driven Compliance, Risk Management, Generative AI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285 Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds
Authors: Siti Aisya Gany, Swee Ching Tan, Sook Yee Gan
Abstract:
Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several proinflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anticoagulation, antimicrobial, antioxidative, anticancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. These seaweeds significantly exhibited potent DPPH and moderate superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.157±0.004mg/ml and 0.849±0.02mg/ml for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.386±0.01mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 50% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118- 0.287 mg/ml.
Keywords: Anticholinesterase, antioxidative, neuroinflammation, seaweeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28844 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5943 Exercise and Cognitive Function: Time Course of the Effects
Authors: Simon B. Cooper, Stephan Bandelow, Maria L. Nute, John G. Morris, Mary E. Nevill
Abstract:
Previous research has indicated a variable effect of exercise on adolescents’ cognitive function. However, comparisons between studies are difficult to make due to differences in: the mode, intensity and duration of exercise employed; the components of cognitive function measured (and the tests used to assess them); and the timing of the cognitive function tests in relation to the exercise. Therefore, the aim of the present study was to assess the time course (10 and 60min post-exercise) of the effects of 15min intermittent exercise on cognitive function in adolescents. 45 adolescents were recruited to participate in the study and completed two main trials (exercise and resting) in a counterbalanced crossover design. Participants completed 15min of intermittent exercise (in cycles of 1 min exercise, 30s rest). A battery of computer based cognitive function tests (Stroop test, Sternberg paradigm and visual search test) were completed 30 min pre- and 10 and 60min post-exercise (to assess attention, working memory and perception respectively).The findings of the present study indicate that on the baseline level of the Stroop test, 10min following exercise response times were slower than at any other time point on either trial (trial by session time interaction, p = 0.0308). However, this slowing of responses also tended to produce enhanced accuracy 10min post-exercise on the baseline level of the Stroop test (trial by session time interaction, p = 0.0780). Similarly, on the complex level of the visual search test there was a slowing of response times 10 min post-exercise (trial by session time interaction, p = 0.0199). However, this was not coupled with an improvement in accuracy (trial by session time interaction, p = 0.2349). The mid-morning bout of exercise did not affect response times or accuracy across the morning on the Sternberg paradigm. In conclusion, the findings of the present study suggest an equivocal effect of exercise on adolescents' cognitive function. The mid-morning bout of exercise appears to cause a speed-accuracy trade off immediately following exercise on the Stroop test (participants become slower but more accurate), whilst slowing response times on the visual search test and having no effect on performance on the Sternberg paradigm. Furthermore, this work highlights the importance of the timing of the cognitive function tests relative to the exercise and the components of cognitive function examined in future studies.
Keywords: Adolescents, cognitive function, exercise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31382 A Study of Priority Evaluation and Resource Allocation for Revitalization of Cultural Heritages in the Urban Development
Authors: Wann-Ming Wey, Yi-Chih Huang
Abstract:
Proper maintenance and preservation of significant cultural heritages or historic buildings is necessary. It can not only enhance environmental benefits and a sense of community, but also preserve a city's history and people’s memory. It allows the next generation to be able to get a glimpse of our past, and achieve the goal of sustainable preserved cultural assets. However, the management of maintenance work has not been appropriate for many designated heritages or historic buildings so far. The planning and implementation of the reuse has yet to have a breakthrough specification. It leads the heritages to a mere formality of being “reserved”, instead of the real meaning of “conservation”. For the restoration and preservation of cultural heritages study issues, it is very important due to the consideration of historical significance, symbolism, and economic benefits effects. However, the decision makers such as the officials from public sector they often encounter which heritage should be prioritized to be restored first under the available limited budgets. Only very few techniques are available today to determine the appropriately restoration priorities for the diverse historical heritages, perhaps because of a lack of systematized decision-making aids been proposed before. In the past, the discussions of management and maintenance towards cultural assets were limited to the selection of reuse alternatives instead of the allocation of resources. In view of this, this research will adopt some integrated research methods to solve the existing problems that decision-makers might encounter when allocating resources in the management and maintenance of heritages and historic buildings.
The purpose of this study is to develop a sustainable decision making model for local governments to resolve these problems. We propose an alternative decision support model to prioritize restoration needs within the limited budgets. The model is constructed based on fuzzy Delphi, fuzzy analysis network process (FANP) and goal programming (GP) methods. In order to avoid misallocate resources; this research proposes a precise procedure that can take multi-stakeholders views, limited costs and resources into consideration. Also, the combination of many factors and goals has been taken into account to find the highest priority and feasible solution results. To illustrate the approach we propose in this research, seven cultural heritages in Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.
Keywords: Cultural Heritage, Historic Buildings, Priority Evaluation, Multi-Criteria Decision Making, Goal Programming, Fuzzy Analytic Network Process, Resource Allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23131 Contraception in Guatemala, Panajachel and the Surrounding Areas: Barriers Affecting Women’s Contraceptive Usage
Authors: Natasha Bhate
Abstract:
Contraception is important in helping to reduce maternal and infant mortality rates by allowing women to control the number and spacing in-between their children. It also reduces the need for unsafe abortions. Women worldwide use contraception; however, the contraceptive prevalence rate is still relatively low in Central American countries like Guatemala. There is also an unmet need for contraception in Guatemala, which is more significant in rural, indigenous women due to barriers preventing contraceptive use. The study objective was to investigate and analyse the current barriers women face, in Guatemala, Panajachel and the surrounding areas, in using contraception, with a view of identifying ways to overcome these barriers. This included exploring the contraceptive barriers women believe exist and the influence of males in contraceptive decision making. The study took place at a charity in Panajachel, Guatemala, and had a cross-sectional, qualitative design to allow an in-depth understanding of information gathered. This particular study design was also chosen to help inform the charity with qualitative research analysis, in view of their intent to create a local reproductive health programme. A semi-structured interview design, including photo facilitation to improve cross-cultural communication, with interpreter assistance, was utilized. A pilot interview was initially conducted with small improvements required. Participants were recruited through purposive and convenience sampling. The study host at the charity acted as a gatekeeper; participants were identified through attendance of the charity’s women’s-initiative programme workshops. 20 participants were selected and agreed to study participation with two not attending; a total of 18 participants were interviewed in June 2017. Interviews were audio-recorded and data were stored on encrypted memory sticks. Framework analysis was used to analyse the data using NVivo11 software. The University of Leeds granted ethical approval for the research. Religion, language, the community, and fear of sickness were examples of existing contraceptive barrier themes recognized by many participants. The influence of men was also an important barrier identified, with themes of machismo and abuse preventing contraceptive use in some women. Women from more rural areas were believed to still face barriers which some participants did not encounter anymore, such as distance and affordability of contraceptives. Participants believed that informative workshops in various settings were an ideal method of overcoming existing contraceptive barriers and allowing women to be more empowered. The involvement of men in such workshops was also deemed important by participants to help reduce their negative influence in contraceptive usage. Overall, four recommendations following this study were made, including contraceptive educational courses, a gender equality campaign, couple-focused contraceptive workshops, and further qualitative research to gain a better insight into men’s opinions regarding women using contraception.Keywords: Barrier, contraception, machismo, religion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623