Search results for: real time traffic reporting
3883 Stochastic Risk Analysis Framework for Building Construction Projects
Authors: Abdulkadir Abu Lawal
Abstract:
The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.
Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7873882 Indications and Characteristics of Clinical Application of Periodontal Suturing
Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj
Abstract:
Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The purpose of this article is to publish some data on the clinical characteristics of periodontal suturing, presenting the advantages and disadvantages of different types of suture threads. The article is a mini-review type of articles selected from the application of keywords on the PubMed page. The number of articles extracted from this article publication page is in accordance with the 10-year publication time limit. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon based on professional experiences and knowledge in this field.
Keywords: Suture, suture material, types of sutures, clinical application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623881 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17843880 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria
Authors: Bello Ali
Abstract:
The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.
Keywords: Accessibility, availability, college of education, ICT, Islamic Studies, learning, North-Eastern, teaching, utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11443879 Value Analysis Dashboard in Supply Chain Management: Real Case Study from Iran
Authors: Seyedehfatemeh Golrizgashti, Seyedali Dalil
Abstract:
The goal of this paper is proposing a supply chain value dashboard in home appliance manufacturing firms to create more value for all stakeholders via balanced scorecard approach. Balanced scorecard is an effective approach that managers have used to evaluate supply chain performance in many fields but there is a lack of enough attention to all supply chain stakeholders, improving value creation and, defining correlation between value indicators and performance measuring quantitatively. In this research the key stakeholders in home appliance supply chain, value indicators with respect to create more value for stakeholders and the most important metrics to evaluate supply chain value performance based on balanced scorecard approach have been selected via literature review. The most important indicators based on expert’s judgment acquired by in survey focused on creating more value for. Structural equation modelling has been used to disclose relations between value indicators and balanced scorecard metrics. The important result of this research is identifying effective value dashboard to create more value for all stakeholders in supply chain via balanced scorecard approach and based on an empirical study covering ten home appliance manufacturing firms in Iran. Home appliance manufacturing firms can increase their stakeholder's satisfaction by using this value dashboard.Keywords: Supply chain management, balanced scorecard, value, Structural modeling, Stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20833878 Moving Area Filter to Detect Object in Video Sequence from Moving Platform
Authors: Sallama Athab, Hala Bahjat
Abstract:
Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.
Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21293877 Numerical Simulation of Tidal Currents in Persian Gulf
Authors: Ameleh Aghajanloo, Moharam Dolatshahi Pirouz, Masoud Montazeri Namin
Abstract:
In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.Keywords: Persian Gulf, Tidal Currents, Shallow Water Equations, Finite Volumes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20633876 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.
Keywords: Industrial sludge drying, heat transfer, mass transfer, mathematical modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6773875 Influence of Densification Process and Material Properties on Final Briquettes Quality from Fast-Growing Willows
Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš
Abstract:
Biomass treatment through densification is very suitable and helpful technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and material variables, which are ultimately reflected on the final solid biofuels quality. The paper deals with the experimental research of the relationship between technological and material variables during densification of fast-growing trees, roundly fast-growing willows. The main goal of presented experimental research is to determine the relationship between compression pressure and raw material particle size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of particle size with interaction of compression pressure and stabilization time on the quality properties of briquettes was determined. These variables interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and from densification machines constructions point of view is very important to know about mutual interaction of these variables on final briquettes quality. The experimental findings presented here are showing the importance of mentioned variables during the densification process.
Keywords: Briquettes density, densification, particle size, compression pressure, stabilization time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17473874 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation and workplace motivation. Hybrid human-AI systems require development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.
Keywords: Employee decision making, artificial intelligence, environment, human trust, technology innovation, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15973873 Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory
Authors: Ghassan H. Halasa
Abstract:
Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.
Keywords: Evolution of Matter, Multidimensional spaces, relativity, Big Bang Theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16463872 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19233871 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS
Authors: Raza Abdulla Saeed
Abstract:
In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a threedimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.Keywords: Computational Fluid Dynamics, Hydraulic Francis Turbine, Numerical Simulation, Two-Phase Mixture Cavitation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32353870 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm
Authors: Sundara Subramanian Karuppasamy, Che Hua Yang
Abstract:
In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.
Keywords: Laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9713869 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis
Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta
Abstract:
Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.
Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15093868 FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity
Authors: Rafic Ayoubi, Jean-Pierre Dubois, Rania Minkara
Abstract:
In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.Keywords: Femto-internet cells, field-programmable gate array, generalized maximal-ratio combining, Lyapunov fractal dimension, pipelining technique, wireless SIMO channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26073867 Effects of Process Parameters on the Yield of Oil from Coconut Fruit
Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude
Abstract:
Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35 and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P<0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26mgKOH-1g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2hrs, leaching temperature of 50oC and solute/solvent ratio of 0.05g/ml.
Keywords: Coconut, oil-extraction, optimization, physicochemical, proximate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26543866 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams
Authors: Rochelle Elva
Abstract:
Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of the mastery of skills through learning. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them, to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy-Value Theory and Motivation Theory, to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected path to success, which continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were on average one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.
Keywords: Expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3513865 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks
Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas
Abstract:
The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, Wind Energy Conversion Systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19883864 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model
Authors: Dipti Patra, Mridula J
Abstract:
In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.
Keywords: Texture Image Segmentation, Gray Level Cooccurrence Matrix, Markov Random Field Model, Ohta colour space, ICM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21763863 A Study to Assess the Employment Ambitions of Graduating Students from College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
Authors: J. George, M. Al Mutairi, W. Aljuryyad, A. Alhussanan, A. Alkashan, T. Aldoghiri, Z. Alamari, A. Albakr
Abstract:
Introduction: Students make plans for their career and are keen in exploring options of employment in those carriers. They make their employment choice based on their desires and preferences. This study aims to identify if students of King Saud Bin Abdulaziz for Health Sciences, College of Applied Medical Sciences after obtaining appropriate education prefer to work as clinicians, university faculty, or full-time researchers. There are limited studies in Saudi Arabia exploring the university student’s employment choices and preferences. This study would help employers to build the required job positions and prevent misleading employers from opening undesired positions in the job market. Methodology: The study included 394 students from third and fourth years both male and female among the eighth programs of college of applied medical sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh campus. A prospective quantitative cross-sectional study was conducted; data were collected by distributing a seven item questionnaire and analyzed using SPSS. Results: Among the participants, 358 (90.9%) of them chose one of the three listed career choices, 263 (66.8%) decided to work as hospital staff after their education, 75 students (19.0%) chose to work as a faculty member in a university after obtaining appropriate degree, 20 students (5.1%) preferred to work as full-time researcher after obtaining appropriate degree, the remaining 36 students (9.1%) had different career goals, such as obtaining a master degree after graduating, to obtain a bachelor of medicine and bachelor in surgery degree, and working in the private sector. The most recurrent reason behind the participants' choice was "career goal", where 276 (70.1%) chose it as a reason. Conclusion: The findings of the study showed that most student’s preferred to work in hospitals as clinicians, followed by choice of working as a faculty in a university, the least choice was to be working as full-time researchers.
Keywords: College of Applied Medical Sciences, employment ambitions, graduating students, King Saud bin Abdulaziz University for Health Sciences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9873862 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26003861 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.
Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21903860 Determinants of Extra Charges for Container Shipments: A Case Study of Nexus Zone Logistics
Authors: Zety Shakila Binti Mohd Yusof, Muhammad Adib Bin Ishak, Hajah Fatimah Binti Hussein
Abstract:
The international shipping business is related to numerous controls or regulations of export and import shipments. It is costly and time consuming, and when something goes wrong or when the buyer or seller fails to comply with the regulations, it can result in penalties, delays, and unexpected costs etc. For the focus of this study, the researchers have selected a local forwarder that provides forwarding and clearance services, Nexus Zone Logistics. It was identified that this company currently has many extra costs to be paid including local and detention charges, which negatively impacts the flow of income and reduces overall stability. Two variables have been identified as factors of extra charges; loaded containers entering the port by exceeded closing time and late delivery of empty containers to the container yard. This study is a qualitative in nature and the secondary data collected was analyzed using self-administered observation. The findings of this study were covered by one selected case for each export and import shipment between July and December 2014. The data were analyzed using frequency analysis based on tables and graphs. The researcher recommends Nexus Zone Logistics impose a 1% deposit payment per container for each shipment (export and import) to its customers.Keywords: International shipping, export and import, detention charges, container shipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11923859 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models
Authors: Rohitash Chandra, Christian W. Omlin
Abstract:
We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18963858 Impact of Some Experimental Procedures on Behavioral Patterns and Physiological Traits of Rats
Authors: Amira, A. Goma, U. E. Mahrous
Abstract:
Welfare may be considered to be a subjective experience; it has a biological function that is related to the fitness and survival of the animal accordingly, researches have suggested that welfare is compromised when the animal's evolutionary fitness is reduced. This study was carried out to explain the effect of some managerial stressors as handling and restraint on behavioral patterns and biochemical parameters of rats. A total of 24 (12 males & 12 females) Sprague-Dawley rats (12 months & 150-180g) were allotted into 3 groups, handled group (4 male & 4 female), restrained group (4 male & 4 female) and control group (4 males & 4 females). The obtained results revealed that time spent feeding, drinking, movement and cage exploration frequencies increased significantly in handled rats than other groups, while lying time and licking increased significantly in restrained rats than handled and controls. Moreover, social behavior decreased in both stressed groups than control. Triglycerides were significantly increased in handled rats than other groups, while total lipid, total protein and globulin significantly increased in both treated groups than control. Corticosterone increased in restrained and handled rats than control ones. Moreover, there was an increment in packed cell volume significantly in restrained rats than others. These deducted that if we want to study the effect of stress on animal welfare it is necessary to study the effect of such stressors on animal’s behavior and physiological responses.
Keywords: Behavior, handling, restraint, rat, welfare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22653857 The Characteristics of Transformation of Institutional Changes and Georgia
Authors: Nazira Kakulia
Abstract:
The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.
Keywords: Competitive, environment, fiscal policy, macro-economic stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9593856 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation
Authors: Ke He, Wumaier Parezhati, Haruka Yamashita
Abstract:
Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.Keywords: Doc2Vec, marketing, online marketplace, recommendation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4723855 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34273854 Health Risk Assessment of Heavy Metals in the Contaminated and Uncontaminated Soils
Authors: S. A. Nta
Abstract:
Application of health risk assessment methods is important in order to comprehend the risk of human exposure to heavy metals and other dangerous pollutants. Four soil samples were collected at distances of 10, 20, 30 m and the control 100 m away from the dump site at depths of 0.3, 0.6 and 0.9 m. The collected soil samples were examined for Zn, Cu, Pb, Cd and Ni using standard methods. The health risks via the main pathways of human exposure to heavy metal were detected using relevant standard equations. Hazard quotient was calculated to determine non-carcinogenic health risk for each individual heavy metal. Life time cancer risk was calculated to determine the cumulative life cancer rating for each exposure pathway. The estimated health risk values for adults and children were generally lower than the reference dose. The calculated hazard quotient for the ingestion, inhalation and dermal contact pathways were less than unity. This means that there is no detrimental concern to the health on human exposure to heavy metals in contaminated soil. The life time cancer risk 5.4 × 10-2 was higher than the acceptable threshold value of 1 × 10-4 which is reflected to have significant health effects on human exposure to heavy metals in contaminated soil. Good hygienic practices are recommended to ease the potential risk to children and adult who are exposed to contaminated soils. Also, the local authorities should be made aware of such health risks for the purpose of planning the management strategy accordingly.
Keywords: Health risk assessment, pollution, heavy metals, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168