Search results for: Environmental flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3671

Search results for: Environmental flow

3311 Experimental Study of Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Inner Threaded Body

Authors: Gürol Önal, Kevser Dincer

Abstract:

In this experimental study, performance of a counter flow Ranque-Hilsch vortex tube (RHVT) with threads cut on its inner surface was investigated experimentally (pitch is 1 and 2 mm). The inner diameter of the vortex tube used was D=9 mm and the ratio of the tube’s length to diameter was L/D=12. The experimental system was a thermodynamic open system. Flow was controlled by a valve on the hot outlet side, where the valve was changed from a nearly closed position to its nearly open position. Fraction of cold flow (ξ) = 0.1-0.9, was determined under 300 and 350 kPa pressurized air. All experimental data were compared with each other, the maximum heating performance of the RHVT system was found to be 38.2 oC and the maximum cooling performance of the RHVT in this study was found to be -30.9 oC at pitch 1 mm.

Keywords: Ranque-Hilsch vortex tube, heating, cooling, temperature separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
3310 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh

Abstract:

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Keywords: Least Squares, Moving node, Pitching, Spirals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
3309 Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop

Authors: Amin Sahraeian

Abstract:

One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.

Keywords: parallel flow shop, make span, linear programming, budget

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
3308 Vortex-Shedding Suppression in Mixed Convective Flow past a Heated Square Cylinder

Authors: A. Rashid, N. Hasan

Abstract:

The present study investigates numerically the phenomenon of vortex-shedding and its suppression in twodimensional mixed convective flow past a square cylinder under the joint influence of buoyancy and free-stream orientation with respect to gravity. The numerical experiments have been conducted at a fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, while Richardson number (Ri) is varied from 0 to 1.6 and freestream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o corresponding to an upward flow and 90o representing a cross-flow scenario, respectively. The continuity, momentum and energy equations, subject to Boussinesq approximation, are discretized using a finite difference method and are solved by a semi-explicit pressure correction scheme. The critical Richardson number, leading to the suppression of the vortex-shedding (Ric), is estimated by using Stuart-Landau theory at various free-stream orientations and the neutral curve is obtained in the Ri-α plane. The neutral curve exhibits an interesting non-monotonic behavior with Ric first increasing with increasing values of α upto 45o and then decreasing till 70o. Beyond 70o, the neutral curve again exhibits a sharp increasing asymptotic trend with Ric approaching very large values as α approaches 90o. The suppression of vortex shedding is not observed at α = 90o (cross-flow). In the unsteady flow regime, the Strouhal number (St) increases with the increase in Richardson number.

Keywords: bluff body, buoyancy, free-stream orientation, vortex-shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
3307 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels

Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin

Abstract:

Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.

Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3325
3306 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution

Authors: Karanja Kibicho, Anthony Sayers

Abstract:

Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.

Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
3305 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube

Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev

Abstract:

A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.

Keywords: Two phase flow, bubble growth, minichannel, generation frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
3304 A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs

Authors: Yu-Chuan Chang, Chen Shi-Kai

Abstract:

A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.

Keywords: Return flow, water reuse, wetland paddy, return flow ratio (RR), water reuse ratio (WRR), water supplementary ratio(WSR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
3303 Effects of Synthetic Jet in Suppressing Cavity Oscillations

Authors: S. Sarkar, R. Mandal

Abstract:

The three-dimensional incompressible flow past a rectangular open cavity is investigated, where the aspect ratio of the cavity is considered as 4. The principle objective is to use large-eddy simulation to resolve and control the large-scale structures, which are largely responsible for flow oscillations in a cavity. The flow past an open cavity is very common in aerospace applications and can be a cause of acoustic source due to hydrodynamic instability of the shear layer and its interactions with the downstream edge. The unsteady Navier-stokes equations have been solved on a staggered mesh using a symmetry-preserving central difference scheme. Synthetic jet has been used as an active control to suppress the cavity oscillations in wake mode for a Reynolds number of ReD = 3360. The effect of synthetic jet has been studied by varying the jet amplitude and frequency, which is placed at the upstream wall of the cavity. The study indicates that there exits a frequency band, which is larger than a critical value, is effective in attenuating cavity oscillations when blowing ratio is more than 1.0.

Keywords: Cavity oscillation, Large Eddy Simulation, Synthetic Jet, Flow Control, Turbulence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
3302 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code

Authors: Kadda Boumediene, Mohamed Bouzit

Abstract:

The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.

Keywords: Seiun Maru propeller, steady, unsteady, CFD, HSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
3301 Payment Problems, Cash Flow and Profitability of Construction Project: A System Dynamics Model

Authors: Wenhua Hou, Xing Liu, Deqiang Chen

Abstract:

The ubiquitous payment problems within construction industry of China are notoriously hard to be resolved, thus lead to a series of impacts to the industry chain. Among of them, the most direct result is affecting the normal operation of contractors negatively. A wealth of research has already discussed reasons of the payment problems by introducing a number of possible improvement strategies. But the causalities of these problems are still far from harsh reality. In this paper, the authors propose a model for cash flow system of construction projects by introducing System Dynamics techniques to explore causal facets of the payment problem. The effects of payment arrears on both cash flow and profitability of project are simulated into four scenarios by using data from real projects. Simulating results show visible clues to help contractors quantitatively determining the consequences for the construction project that arise from payment delay.

Keywords: payment problems, cash flow, profitability, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
3300 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: Seepage, soil, velocity, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
3299 Alignment of a Combined Groin for Flow through a Straight Open Channel

Authors: M. Alauddin, M. A. Ullah, M. Alom, M. N. Islam

Abstract:

The rivers in Bangladesh are highly unstable having loose boundaries, mild slope of water surface and bed, irregular siltation of huge sediment coming from upstream, among others. The groins are installed in the river bank to deflect the flowing water away from the vulnerable zones. The conventional groins are found to be unstable and ineffective. The combined groin having both impermeable and permeable components in the same structure improves the flow field to function better over others. The main goal of this study is to analyze the hydraulic characteristics induced by the combined groins of different alignments by using a 2D numerical model, iRIC Nays2DH. In this numerical simulation, the K-ε model for turbulence and Cubic Interpolation Pseudo-particle (CIP) method for advective terms are utilized. A particular flow condition is applied in the channel for all sets of groins with different alignments. The simulation results reveal that the combined groins alter the flow patterns considerably, with no significant recirculation of flow in the groin field. The effect of different alignments of groins is found somewhat different. Based on hydraulic features caused by the groins, the combined groin that aligns the permeable component towards slightly downstream performs better over others.

Keywords: Combined groin, alignment, hydraulic characteristics, numerical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
3298 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods

Authors: Y. Galerkin, L. Marenina

Abstract:

Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.

Keywords: Vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
3297 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
3296 Mathematical Models of Flow Shop and Job Shop Scheduling Problems

Authors: Miloš Šeda

Abstract:

In this paper, mathematical models for permutation flow shop scheduling and job shop scheduling problems are proposed. The first problem is based on a mixed integer programming model. As the problem is NP-complete, this model can only be used for smaller instances where an optimal solution can be computed. For large instances, another model is proposed which is suitable for solving the problem by stochastic heuristic methods. For the job shop scheduling problem, a mathematical model and its main representation schemes are presented.

Keywords: Flow shop, job shop, mixed integer model, representation scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4690
3295 Heat Transfer and Frictional Characteristics in Rectangular Channel with Inclined Perforated Baffles

Authors: Se Kyung Oh, Ary Bachtiar Krishna Putra, Soo Whan Ahn

Abstract:

A numerical study on the turbulent flow and heat transfer characteristics in the rectangular channel with different types of baffles is carried out. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5o. Reynolds number is varied between 23,000 and 57,000. The SST turbulence model is applied in the calculation. The validity of the numerical results is examined by the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and these significantly affect the local heat transfer characteristics. The heat transfer and friction factor characteristics are significantly affected by the perforation density of the baffle plate. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

Keywords: Turbulent flow, rectangular channel, inclined baffle, heat transfer, friction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
3294 Numerical Simulation of Convective Heat Transfer and Fluid Flow through Porous Media with Different Moving and Heated Walls

Authors: Laith Jaafer Habeeb

Abstract:

The present study is concerned with the free convective two dimensional flow and heat transfer, within the framework of Boussinesq approximation, in anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Lattice Boltzmann method fornon-Darcy flow model. Effects of the moving lid direction (top, bottom, left, and right wall moving in the negative and positive x&ydirections), number of moving walls (one or two opposite walls), the sliding wall velocity, and four different constant temperatures opposite walls cases (two surfaces are being insulated and the twoother surfaces areimposed to be at constant hot and cold temperature)have been conducted. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.

Keywords: Numerical simulation, lid-driven cavity flow, saturated porous medium, different velocity and heated walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
3293 Incident Shock Wave Interaction with an Axisymmetric Cone Body Placed in Shock Tube

Authors: Rabah Haoui

Abstract:

This work presents a numerical simulation of the interaction of an incident shock wave propagates from the left to the right with a cone placed in a tube at shock. The Mathematical model is based on a non stationary, viscous and axisymmetric flow. The Discretization of the Navier-stokes equations is carried out by the finite volume method in the integral form along with the Flux Vector Splitting method of Van Leer. Here, adequate combination of time stepping parameter, CFL coefficient and mesh size level is selected to ensure numerical convergence. The numerical simulation considers a shock tube filled with air. The incident shock wave propagates to the right with a determined Mach number and crosses the cone by leaving behind it a stationary detached shock wave in front of the nose cone. This type of interaction is observed according to the time of flow.

Keywords: Supersonic flow, viscous flow, finite volume, cone body

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
3292 Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola

Abstract:

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 350C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-350C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 350C to the vicinity of 280C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.80C and from 29.8 to 31.90C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 280C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 350C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Keywords: Water temperature, flow column, electrocoagulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
3291 Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method

Authors: Afshin Ahmadi Nadooshan

Abstract:

In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.

Keywords: Interfacial flow, Incompressible flow, surface tension, Volume-Of-Fluid, Kelvin-Helmholtz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
3290 Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media

Authors: A.Memari

Abstract:

In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.

Keywords: Steady flow; Walter's B' Fluid;, vertical channel;porous media, Homotopy Perturbation Method (HPM), Numerical Solution (NS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
3289 Accurate Optical Flow Based on Spatiotemporal Gradient Constancy Assumption

Authors: Adam Rabcewicz

Abstract:

Variational methods for optical flow estimation are known for their excellent performance. The method proposed by Brox et al. [5] exemplifies the strength of that framework. It combines several concepts into single energy functional that is then minimized according to clear numerical procedure. In this paper we propose a modification of that algorithm starting from the spatiotemporal gradient constancy assumption. The numerical scheme allows to establish the connection between our model and the CLG(H) method introduced in [18]. Experimental evaluation carried out on synthetic sequences shows the significant superiority of the spatial variant of the proposed method. The comparison between methods for the realworld sequence is also enclosed.

Keywords: optical flow, variational methods, gradient constancy assumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
3288 Optimal Route Policy in Air Traffic Control with Competing Airlines

Authors: Siliang Wang, Minghui Wang

Abstract:

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
3287 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
3286 Sustainable Ship Management

Authors: Gorana Jelic Mrcelic, Merica Sliskovic

Abstract:

Environmental responsibility includes improvement of environmental performance in order to reduce environmental impact. This paper gives a short review of some important environmental objectives, targets and actions that modern shipping company should follow.

Keywords: Environment, MARPOL, ships, pollutants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
3285 Effects of Mach Number and Angle of Attack on Mass Flow Rates and Entropy Gain in a Supersonic Inlet

Authors: Taher Fodeibou, Ziaul Huque, Jenny Galvis

Abstract:

A parametric study of a mixed-compression supersonic inlet is performed and reported. The effects of inlet Mach Numbers, varying from 4 to 10, and angle of attack, varying from 0 to 10, are reported for a constant inlet dynamic pressure. The paper looked at the variations of mass flow rates through the inlet, gain in entropy through the inlet, and the angles of the external oblique shocks. The mass flow rates were found to decrease monotonically with Mach numbers and increase with angle of attacks. On the other hand the entropy gain through the inlet increased with increasing Mach number and angle of attack. The variation in static pressure was found to be identical from the inlet throat to the exit for Mach number values higher than 6.

Keywords: Angle of attack, entropy gain, mass flow rates, supersonic inlets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
3284 Application of De-Laval Nozzle Transonic Flow Field Computation Approaches

Authors: A. Haddad, H. Kbab

Abstract:

A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.

Keywords: De-Laval nozzles, transonic calculations, transonic flow, supersonic nozzle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3297
3283 Heat and Mass Transfer for Viscous Flow with Radiation Effect past a Nonlinearly Stretching Sheet

Authors: Kai-Long Hsiao

Abstract:

In this study, an analysis has been performed for heat and mass transfer of a steady laminar boundary-layer flow of a viscous flow past a nonlinearly stretching sheet. Parameters n, Ec, k0, Sc represent the dominance of the nonlinearly effect, viscous effect, radiation effect and mass transfer effect which have presented in governing equations, respectively. The similarity transformation and the finite-difference method have been used to analyze the present problem.

Keywords: Nonlinearly stretching sheet, heat and mass transfer, radiation effect, viscous effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
3282 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: Contex-sensitive, CFI, binary analysis, code reuse attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948