Search results for: Diagnosis processor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 527

Search results for: Diagnosis processor

167 Concepts Extraction from Discharge Notes using Association Rule Mining

Authors: Basak Oguz Yolcular

Abstract:

A large amount of valuable information is available in plain text clinical reports. New techniques and technologies are applied to extract information from these reports. In this study, we developed a domain based software system to transform 600 Otorhinolaryngology discharge notes to a structured form for extracting clinical data from the discharge notes. In order to decrease the system process time discharge notes were transformed into a data table after preprocessing. Several word lists were constituted to identify common section in the discharge notes, including patient history, age, problems, and diagnosis etc. N-gram method was used for discovering terms co-Occurrences within each section. Using this method a dataset of concept candidates has been generated for the validation step, and then Predictive Apriori algorithm for Association Rule Mining (ARM) was applied to validate candidate concepts.

Keywords: association rule mining, otorhinolaryngology, predictive apriori, text mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
166 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
165 Multidimensional Performance Management

Authors: David Wiese

Abstract:

In order to maximize efficiency of an information management platform and to assist in decision making, the collection, storage and analysis of performance-relevant data has become of fundamental importance. This paper addresses the merits and drawbacks provided by the OLAP paradigm for efficiently navigating large volumes of performance measurement data hierarchically. The system managers or database administrators navigate through adequately (re)structured measurement data aiming to detect performance bottlenecks, identify causes for performance problems or assessing the impact of configuration changes on the system and its representative metrics. Of particular importance is finding the root cause of an imminent problem, threatening availability and performance of an information system. Leveraging OLAP techniques, in contrast to traditional static reporting, this is supposed to be accomplished within moderate amount of time and little processing complexity. It is shown how OLAP techniques can help improve understandability and manageability of measurement data and, hence, improve the whole Performance Analysis process.

Keywords: Data Warehousing, OLAP, Multidimensional Navigation, Performance Diagnosis, Performance Management, Performance Tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
164 Legal Basis for Water Resources Management in Brazil: Case Study of the Rio Grande Basin

Authors: Janaína F. Guidolini, Jean P. H. B. Ometto, Angélica Giarolla, Peter M. Toledo, Carlos A. Valera

Abstract:

The water crisis, a major problem of the 21st century, occurs mainly due to poor management. The central issue that should govern the management is the integration of the various aspects that interfere with the use of water resources and their protection, supported by legal basis. A watershed is a unit of water interacting with the physical, biotic, social, economic and cultural variables. The Brazilian law recognized river basin as the territorial management unit. Based on the diagnosis of the current situation of the water resources of the Rio Grande Basin, a discussion informed in the Brazilian legal basis was made to propose measures to fight or mitigate damages and environmental degradation in the Basin. To manage water resources more efficiently, conserve water and optimize their multiple uses, the integration of acquired scientific knowledge and management is essential. Moreover, it is necessary to monitor compliance with environmental legislation.

Keywords: Conservation of soil and water, river basin, sustainability, water governance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
163 Wavelet based Image Registration Technique for Matching Dental x-rays

Authors: P. Ramprasad, H. C. Nagaraj, M. K. Parasuram

Abstract:

Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two levels of affine transformation. Wavelet coefficients are correlated instead of gray values. Algorithm has been applied on number of pre and post RCT (Root canal treatment) periapical radiographs. Root Mean Square Error (RMSE) and Correlation coefficients (CC) are used for quantitative evaluation. Proposed technique outperforms conventional Multiresolution strategy based image registration technique and manual registration technique.

Keywords: Diagnostic imaging, geometric transformation, image registration, multiresolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
162 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
161 A Predictive Rehabilitation Software for Cerebral Palsy Patients

Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux

Abstract:

Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.

Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
160 An Intelligent Human-Computer Interaction System for Decision Support

Authors: Chee Siong Teh, Chee Peng Lim

Abstract:

This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.

Keywords: Interactive evolutionary computation, multivariate data projection, pattern classification, topographic map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
159 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
158 Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan

Authors: Magdi M. E. Zumrawi

Abstract:

Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings.

Keywords: Culvert, erosion, failure, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
157 A Quantitative Study Identifying the Prevalence of Anxiety in Dyslexic Students in Higher Education

Authors: Amanda Abbott-Jones

Abstract:

Adult students with dyslexia in higher education can receive support for their cognitive needs but may also experience negative emotion such as anxiety due to their dyslexia in connection with their studies. This paper aims to test the hypothesis that adult dyslexic learners have a higher prevalence of academic and social anxiety than their non-dyslexic peers. A quantitative approach was used to measure differences in academic and social anxiety between 102 students with a formal diagnosis of dyslexia compared to 72 students with no history of learning difficulties. Academic and social anxiety was measured in a questionnaire based on the State-Trait Anxiety Inventory. Findings showed that dyslexic students showed statistically significant higher levels of academic, but not social anxiety in comparison to the non-dyslexic sample. Dyslexic students in higher education show academic anxiety levels that are well above what is shown by students without dyslexia. The implications of this for the dyslexia practitioner is that delivery of strategies to deal with anxiety should be seen equally as important, if not more so, than interventions to deal with cognitive difficulties.

Keywords: Academic, anxiety, dyslexia, quantitative, students, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
156 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application

Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil

Abstract:

In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or  absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.

Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
155 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: Diabetic retinopathy, fundus, CHT, exudates, hemorrhages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
154 Real Time Remote Monitoring and Fault Detection in Wind Turbine

Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui

Abstract:

In new energy development, wind power has boomed. It is due to the proliferation of wind parks and their operation in supplying the national electric grid with low cost and clean resources. Hence, there is an increased need to establish a proactive maintenance for wind turbine machines based on remote control and monitoring. That is necessary with a real-time wireless connection in offshore or inaccessible locations while the wired method has many flaws. The objective of this strategy is to prolong wind turbine lifetime and to increase productivity. The hardware of a remote control and monitoring system for wind turbine parks is designed. It takes advantage of GPRS or Wi-Max wireless module to collect data measurements from different wind machine sensors through IP based multi-hop communication. Computer simulations with Proteus ISIS and OPNET software tools have been conducted to evaluate the performance of the studied system. Study findings show that the designed device is suitable for application in a wind park.

Keywords: Embedded System, Monitoring, Wind Turbine, Faults Diagnosis, TCP/IP Protocol, Real Time, Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3977
153 Proportion and Factors Associated with Presumptive Tuberculosis among Suspected Pediatric TB Patients

Authors: Naima Nur, Safa Islam, Saeema Islam, Md. Faridul Alam

Abstract:

The study addresses the increasing challenge of pediatric presumptive tuberculosis, emphasizing the need to understand the factors associated with it. The research aims to determine the proportion of presumptive TB and factors associated with it among suspected pediatric tuberculosis patients. A cross-sectional study was conducted at ICDDR-Bangladesh, collecting specimens from suspected pediatric patients and using logistic regression for data analysis. The study found a high proportion of presumptive TB (85.7%) but no statistically significant differences between presumptive and non-presumptive TB. Theoretical importance of the study highlights the importance of identifying factors associated with presumptive TB for better control and management strategies. Specimens were collected from 84 suspected pediatric patients diagnosed with TB based on clinical symptoms/radiological findings. Microbiological tests like smear-microscopy, culture, and GeneXpert were used to isolate presumptive TB and confirmed TB. The proportion of presumptive TB was 85.7% among suspected pediatric TB patients. Among various factors that were not found to be associated with the presumptive TB. The study concludes that despite a high proportion of presumptive TB, no significant differences were found between presumptive and non-presumptive TB cases.

Keywords: Presumptive tuberculosis, confirmed tuberculosis, patient's characteristics, diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
152 A New Hybrid RMN Image Segmentation Algorithm

Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen

Abstract:

The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).

Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
151 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks

Authors: L. Salhi, M. Talbi, A. Cherif

Abstract:

This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.

Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
150 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.

Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
149 An Anatomically-Based Model of the Nerves in the Human Foot

Authors: Muhammad Zeeshan UlHaque, Peng Du, Leo K. Cheng, Marc D. Jacobs

Abstract:

Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.

Keywords: Diabetic neuropathy, Finite element modeling, Monte Carlo Algorithm, Somatosensory nerve networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
148 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor

Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi

Abstract:

In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.

Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
147 Security Architecture for At-Home Medical Care Using Sensor Network

Authors: S.S.Mohanavalli, Sheila Anand

Abstract:

This paper proposes a novel architecture for At- Home medical care which enables senior citizens, patients with chronic ailments and patients requiring post- operative care to be remotely monitored in the comfort of their homes. This architecture is implemented using sensors and wireless networking for transmitting patient data to the hospitals, health- care centers for monitoring by medical professionals. Patients are equipped with sensors to measure their physiological parameters, like blood pressure, pulse rate etc. and a Wearable Data Acquisition Unit is used to transmit the patient sensor data. Medical professionals can be alerted to any abnormal variations in these values for diagnosis and suitable treatment. Security threats and challenges inherent to wireless communication and sensor network have been discussed and a security mechanism to ensure data confidentiality and source authentication has been proposed. Symmetric key algorithm AES has been used for encrypting the data and a patent-free, two-pass block cipher mode CCFB has been used for implementing semantic security.

Keywords: data confidentiality, integrity, remotemonitoring, source authentication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
146 Multiple-Points Fault Signature's Dynamics Modeling for Bearing Defect Frequencies

Authors: Muhammad F. Yaqub, Iqbal Gondal, Joarder Kamruzzaman

Abstract:

Occurrence of a multiple-points fault in machine operations could result in exhibiting complex fault signatures, which could result in lowering fault diagnosis accuracy. In this study, a multiple-points defect model (MPDM) is proposed which can simulate fault signature-s dynamics for n-points bearing faults. Furthermore, this study identifies that in case of multiple-points fault in the rotary machine, the location of the dominant component of defect frequency shifts depending upon the relative location of the fault points which could mislead the fault diagnostic model to inaccurate detections. Analytical and experimental results are presented to characterize and validate the variation in the dominant component of defect frequency. Based on envelop detection analysis, a modification is recommended in the existing fault diagnostic models to consider the multiples of defect frequency rather than only considering the frequency spectrum at the defect frequency in order to incorporate the impact of multiple points fault.

Keywords: Envelop detection, machine defect frequency, multiple faults, machine health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
145 Resilience in Patients with Chronic Kidney Disease in Hemodialysis

Authors: Gomes C. C. Izabel, Lanzotti B. Rafaela, Orlandi S. Fabiana

Abstract:

Chronic Kidney Disease is considered a serious public health problem. The exploitation of resilience has been guided by studies conducted in various contexts, especially in hemodialysis, since the impact of diagnosis and restrictions produced during the treatment process because, despite advances in treatment, remains the stigma of the disease and the feeling of pain, hopelessness, low self-esteem and disability. The objective was to evaluate the level of resilience of patients in chronic renal dialysis. This is a descriptive, correlational, cross and quantitative research. The sample consisted of 100 patients from a Renal Replacement Therapy Unit in the countryside of São Paulo. For data collection were used the characterization instrument of Participants and the Resilience Scale. There was a predominance of males (70.0%) were Caucasian (45.0%) and had completed elementary education (34.0%). The average score obtained through the Resilience Scale was 131.3 (± 20.06) points. The resiliency level submitted may be considered satisfactory. It is expected that this study will assist in the preparation of programs and actions in order to avoid possible situations of crises faced by chronic renal patients.

Keywords: Hemodialysis units, hospital, renal dialysis, renal insufficiency chronic, resilience psychological.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
144 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
143 Massive Lesions Classification using Features based on Morphological Lesion Differences

Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo

Abstract:

Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.

Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
142 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains

Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi

Abstract:

Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.

Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
141 Recent Advances and Challenges in the Catalytic Combustion at Micro-Scales

Authors: Junjie Chen, Deguang Xu

Abstract:

The high energy density of hydrocarbon fuels creates a great opportunity to develop catalytic combustion based micro-power generation systems to meet increasing demands for micro-scale devices. In this work, the recent technological development progress in fundamental understanding of the catalytic combustion at micro-scales are reviewed. The underlying fundamental mechanisms, flame stability, hetero-homogeneous interaction, catalytic ignition, and catalytic reforming are reviewed in catalytic micro-scale combustion systems. Catalytic combustion and its design, diagnosis, and modeling operation are highlighted for micro-combustion application purpose; these fundamental aspects are reviewed. Finally, an overview of future studies is made. The primary objective of this review is to present an overview of the development of micro-power generators by focusing more on the advances and challenges in the fundamental understanding of the catalytic combustion at micro-scales.

Keywords: Micro-combustion, catalytic combustion, flame stability, hetero-homogeneous interaction, catalytic ignition, catalytic reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
140 Level of Behavioral Development for Hepatitis C Virus Cases versus Their Contacts: Does Infection Make a Difference and What Is Beyond?

Authors: Ammal M. Metwally, Lobna A. El Etreby, Rehan M. Saleh, Ghada Abdrabou, Somia I. Salama, Amira Orabi, Mohamed Abdelrahman

Abstract:

Hepatitis C virus infection is a public health threat in Egypt. To control infection, efforts should be spent to encourage healthy behavior. This study aimed to assess the level of behavioral development in order to create a positive environment for the adoption of the recommended behaviors. The study was conducted over one year from Jan. 2011 till Jan. 2012.Knowledge, attitude and behavior of 540 HCV patients and 102 of their contacts were assessed and the level of behavioral development was determined. The study revealed that the majority of patients and contacts knew that HCV infection is dangerous with perceived concern for early diagnosis and treatment. More than 75% knew the correct modes of transmission. The assessment showed positive attitudes towards the recommended practices with intention to adopt those practices. Strategies of creating opportunities to continue the recommended behaviors should be adopted together with the reinforcement of social support.

Keywords: Hepatitis C virus, Level of behavioral development, recommended behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
139 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
138 Hypothesis of a Holistic Treatment of Cancer: Crab Method

Authors: Devasis Ghosh

Abstract:

The main hindrance to total cure of cancer is a) the failure to control continued production of cancer cells, b) its sustenance and c) its metastasis. This review study has tried to address this issue of total cancer cure in a more innovative way. A 10-pronged “CRAB METHOD”, a novel holistic scientific approach of Cancer treatment has been hypothesized in this paper. Apart from available Chemotherapy, Radiotherapy and Oncosurgery, (which shall not be discussed here), seven other points of interference and treatment has been suggested, i.e. 1. Efficient stress management. 2. Dampening of ATF3 expression. 3. Selective inhibition of Platelet Activity. 4. Modulation of serotonin production, metabolism and 5HT receptor antagonism. 5. Auxin, its anti-proliferative potential and its modulation. 6. Melatonin supplementation because of its oncostatic properties. 7. HDAC Inhibitors especially valproic acid use due to its apoptotic role in many cancers. If all the above stated seven steps are thoroughly taken care of at the time of initial diagnosis of cancer along with the available treatment modalities of Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the morbidity and mortality rate of cancer may be greatly reduced.

Keywords: ATF3 dampening, auxin modulation, cancer, platelet activation, serotonin, stress, valproic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445