Search results for: Attention Multiple Instance Learning
504 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415503 To Know the Way to the Unknown: A Semi-Experimental Study on the Implication of Skills and Knowledge for Creative Processes in Higher Education
Authors: Mikkel Snorre Wilms Boysen
Abstract:
From a theoretical perspective, expertise is generally considered a precondition for creativity. The assumption is that an individual needs to master the common and accepted rules and techniques within a certain knowledge-domain in order to create something new and valuable. However, real life cases, and a limited amount of empirical studies, demonstrate that this assumption may be overly simple. In this article, this question is explored through a number of semi-experimental case studies conducted within the fields of music, technology, and youth culture. The studies indicate that, in various ways, expertise plays an important part in creative processes. However, the case studies also indicate that expertise sometimes leads to an entrenched perspective, in the sense that knowledge and experience may work as a path into the well-known rather than into the unknown. In this article, these issues are explored with reference to different theoretical approaches to creativity and learning, including actor-network theory, the theory of blind variation and selective retention, and Csikszentmihalyi’s system model. Finally, some educational aspects and implications of this are discussed.Keywords: Creativity, education, expertise, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754502 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008501 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.
Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840500 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment
Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet
Abstract:
Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.
Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413499 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana
Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu
Abstract:
Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.
Keywords: Sickle cell disease, quality of life, anxiety, depression, socio-demographic characteristics, Ghana.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826498 The Role of Planning and Memory in the Navigational Ability
Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal
Abstract:
Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.
Keywords: Memory, planning navigational ability, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441497 Youth Friendly Health Services for Rural Thai Teenagers
Authors: C. Sridawruang
Abstract:
Young people today has sexual activities differing from those of earlier generations, in that teenagers are likely to have multiple partners, and are frequently in short-term relationships or with partners that are not well known to them. The proportion of teenage mothers in Thailand has increased. Young people were not specifically addressed during the overall very successful HIV-prevention campaigns. Because of this missed opportunity, they are still unaware of the risk of unsafe sexual behavior. Aims: To describe the reproductive health care services in perspectives of rural Thai teenagers Methods: This survey was one part of a mixed method approach taken using survey and focus groups with 439 teenagers aged 12-18 years in 5 villages, Udon Thani, Thailand. The standard questionnaire survey had been used for collecting data. The numeric data was checked and analyzed by using descriptive statistics. Results: Most teenager respondents stated that they do not know where sexual reproductive health services provided for them. Most teenagers felt difficult to access and talk with health staff about sexual related issues. They stated that discussing, or consulting with health providers might not be safe. Teenagers might lose opportunities to access and get advice from health care services. The mean knowledge score of contraception and condom reproductive was 6.34 from a total score 11. Most teenagers especially girls expressed a need for counseling services and reported a need for telephone services. Conclusions: The need of appropriate information focusing on sexual relationships and contraception should be designed to help young people make wise decisions and there should be set health care services for Thai teenagers to make sure that teenagers could access easily. Health care providers need to be trained to improve their knowledge, attitudes and skills in reproductive health care practices for Thai teenagers.
Keywords: Youth friendly health services, rural, Thai, teenagers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304496 Inter-Organizational Knowledge Transfer Through Malaysia E-government IT Outsourcing: A Theoretical Review
Authors: Nor Aziati Abdul Hamid, Juhana Salim
Abstract:
The main objective of this paper is to contribute the existing knowledge transfer and IT Outsourcing literature specifically in the context of Malaysia by reviewing the current practices of e-government IT outsourcing in Malaysia including the issues and challenges faced by the public agencies in transferring the knowledge during the engagement. This paper discusses various factors and different theoretical model of knowledge transfer starting from the traditional model to the recent model suggested by the scholars. The present paper attempts to align organizational knowledge from the knowledge-based view (KBV) and organizational learning (OL) lens. This review could help shape the direction of both future theoretical and empirical studies on inter-firm knowledge transfer specifically on how KBV and OL perspectives could play significant role in explaining the complex relationships between the client and vendor in inter-firm knowledge transfer and the role of organizational management information system and Transactive Memory System (TMS) to facilitate the organizational knowledge transferring process. Conclusion is drawn and further research is suggested.Keywords: E-government, IT Outsourcing, Knowledge Management, Knowledge Transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368495 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method
Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay
Abstract:
This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.Keywords: Agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072494 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812493 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm
Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984492 ARMrayan Multimedia Mobile CMS: a Simplified Approach towards Content-Oriented Mobile Application Designing
Authors: Ali Reza Manashty, Mohammad Reza Ahmadzadeh Raji, Zahra Forootan Jahromi, Amir Rajabzadeh
Abstract:
The ARMrayan Multimedia Mobile CMS (Content Management System) is the first mobile CMS that gives the opportunity to users for creating multimedia J2ME mobile applications with their desired content, design and logo; simply, without any need for writing even a line of code. The low-level programming and compatibility problems of the J2ME, along with UI designing difficulties, makes it hard for most people –even programmers- to broadcast their content to the widespread mobile phones used by nearly all people. This system provides user-friendly, PC-based tools for creating a tree index of pages and inserting multiple multimedia contents (e.g. sound, video and picture) in each page for creating a J2ME mobile application. The output is a standalone Java mobile application that has a user interface, shows texts and pictures and plays music and videos regardless of the type of devices used as long as the devices support the J2ME platform. Bitmap fonts have also been used thus Middle Eastern languages can be easily supported on all mobile phone devices. We omitted programming concepts for users in order to simplify multimedia content-oriented mobile applictaion designing for use in educational, cultural or marketing centers. Ordinary operators can now create a variety of multimedia mobile applications such as tutorials, catalogues, books, and guides in minutes rather than months. Simplicity and power has been the goal of this CMS. In this paper, we present the software engineered-designed concepts of the ARMrayan MCMS along with the implementation challenges faces and solutions adapted.Keywords: Mobile CMS, MCMS, Mobile Content Builder, J2ME Application, Multimedia Mobile Application, MultimediaCMS, Multimedia Mobile CMS, Content Management System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673491 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.
Keywords: Combat effectiveness, emerging technologies, human factors, systems safety analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219490 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams
Authors: Ruoyang Tang, Jianguo Nie
Abstract:
Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.
Keywords: Bracing member, construction stage, lateral-torsional buckling, steel girder system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550489 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240488 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557487 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills
Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu
Abstract:
This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.Keywords: Young Children, Autism, Mathematics, Curriculum, teaching and learning, children with special needs, Project MIND.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927486 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637485 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances
Authors: Proud Arunrangsiwed, Sarinya Kongtieng
Abstract:
Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.
Keywords: Meta-regression analysis, social networking site use, academic performance, multitasking, motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683484 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.
Keywords: Virtualization, OS based virtualization, container and hypervisor based virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943483 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder
Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen
Abstract:
Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.Keywords: Natural Language Inference, explanation generation, variational auto-encoder, generative model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693482 A Web-Based Self-Learning Grammar for Spoken Language Understanding
Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno
Abstract:
One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.
Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776481 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.
Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845480 The Service Appraisal of Soldiers of the Army of the Czech Republic in the Context of Personal Expenses
Authors: Tereza Dolečková
Abstract:
Following article provides the comparison of international norms and standards formulating personal expenses, and then it illustrates the national concept of personal expenses of the Ministry of Defence. Then a new salary system of soldiers and the importance of the service appraisal in the context of personal expenses of the Ministry of Defence are explained. The first part of the article includes formulation of the approach to the definition of personal expenses within the international norms and standards and also within the Ministry of Defence of the Czech Republic. The structure of employees of the Ministry of Defence of the Czech Republic in years 2012 – 2014 and the amount of military expenses and the share of salary expenses of the Ministry of total expenses of the Ministry are clarified there, also the comparison of the amount of military expenses in chosen member states of the North Atlantic Treaty Organization is done. The salary system of professional soldiers in connection with the amendment of the Act No. 221/1999 Coll. on Professional Soldiers is clarified in the second part of this article. The amendment significantly regulates the salary items of soldiers but changes are also in the service appraisal of soldiers which reflects one of seven salary items of soldiers – the performance bonus. The aim of this article is to clarify different approach to define personal expenses with emphasis on the Ministry of Defence of the Czech Republic which overlaps to the service appraisal of soldiers of the Army of the Czech Republic and their salary system in connection with personal expenses of the Ministry of Defence of the Czech Republic. The efficient and objective system of the service appraisal and the use of its results are connected to the principles of the career advancement; only the best soldiers can advance in the system of the service careers to higher positions. That is why it is necessary to improve the service appraisal so it would provide the maximum information about the performance of a soldier and it would also motivate the soldier in his development. The attention should be paid to the service appraisal of the soldiers of the Army of the Czech Republic to achieve as much objectivity as possible.
Keywords: Career, human resource management and development, personal expenses, salary system of soldiers, service appraisal of soldiers, the Army of the Czech Republic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344479 Machine Learning Approach for Identifying Dementia from MRI Images
Authors: S. K. Aruna, S. Chitra
Abstract:
This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.
Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116478 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves
Authors: Alicia Heraz, Claude Frasson
Abstract:
This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.
Keywords: Algorithms, brainwaves, emotional dimensions, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205477 Reform-Oriented Teaching of Introductory Statistics in the Health, Social and Behavioral Sciences – Historical Context and Rationale
Authors: Rossi A. Hassad
Abstract:
There is widespread emphasis on reform in the teaching of introductory statistics at the college level. Underpinning this reform is a consensus among educators and practitioners that traditional curricular materials and pedagogical strategies have not been effective in promoting statistical literacy, a competency that is becoming increasingly necessary for effective decision-making and evidence-based practice. This paper explains the historical context of, and rationale for reform-oriented teaching of introductory statistics (at the college level) in the health, social and behavioral sciences (evidence-based disciplines). A firm understanding and appreciation of the basis for change in pedagogical approach is important, in order to facilitate commitment to reform, consensus building on appropriate strategies, and adoption and maintenance of best practices. In essence, reform-oriented pedagogy, in this context, is a function of the interaction among content, pedagogy, technology, and assessment. The challenge is to create an appropriate balance among these domains.
Keywords: Reform-oriented, reform, introductory statistics, health, behavioral sciences, evidence-based, psychology, teaching, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996476 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools
Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz
Abstract:
The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.
Keywords: Hearing-impaired children, hearing aids, hearing aids maintenance skill, and motion graphics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575475 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation
Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita
Abstract:
In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.
Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075