Search results for: Metrics calibration
109 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655108 A Similarity Function for Global Quality Assessment of Retinal Vessel Segmentations
Authors: Arturo Aquino, Manuel Emilio Gegundez, Jose Manuel Bravo, Diego Marin
Abstract:
Retinal vascularity assessment plays an important role in diagnosis of ophthalmic pathologies. The employment of digital images for this purpose makes possible a computerized approach and has motivated development of many methods for automated vascular tree segmentation. Metrics based on contingency tables for binary classification have been widely used for evaluating performance of these algorithms and, concretely, the accuracy has been mostly used as measure of global performance in this topic. However, this metric shows very poor matching with human perception as well as other notable deficiencies. Here, a new similarity function for measuring quality of retinal vessel segmentations is proposed. This similarity function is based on characterizing the vascular tree as a connected structure with a measurable area and length. Tests made indicate that this new approach shows better behaviour than the current one does. Generalizing, this concept of measuring descriptive properties may be used for designing functions for measuring more successfully segmentation quality of other complex structures.
Keywords: Retinal vessel segmentation, quality assessment, performanceevaluation, similarity function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500107 A General Segmentation Scheme for Contouring Kidney Region in Ultrasound Kidney Images using Improved Higher Order Spline Interpolation
Authors: K. Bommanna Raja, M.Madheswaran, K.Thyagarajah
Abstract:
A higher order spline interpolated contour obtained with up-sampling of homogenously distributed coordinates for segmentation of kidney region in different classes of ultrasound kidney images has been developed and presented in this paper. The performance of the proposed method is measured and compared with modified snake model contour, Markov random field contour and expert outlined contour. The validation of the method is made in correspondence with expert outlined contour using maximum coordinate distance, Hausdorff distance and mean radial distance metrics. The results obtained reveal that proposed scheme provides optimum contour that agrees well with expert outlined contour. Moreover this technique helps to preserve the pixels-of-interest which in specific defines the functional characteristic of kidney. This explores various possibilities in implementing computer-aided diagnosis system exclusively for US kidney images. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747106 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru
Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza
Abstract:
Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.
Keywords: Ground-ozone, Lima, Sulphur dioxide, WRF-Chem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364105 Rapid Discharge of Solid-State Hydrogen Storage Using Porous Silicon and Metal Foam
Authors: Loralee P. Potter, Peter J. Schubert
Abstract:
Solid-state hydrogen storage using catalytically-modified porous silicon can be rapidly charged at moderate pressures (8 bar) without exothermic runaway. Discharge requires temperatures of approximately 110oC, so for larger storage vessels a means is required for thermal energy to penetrate bulk storage media. This can be realized with low-density metal foams, such as Celmet™. This study explores several material and dimensional choices of the metal foam to produce rapid heating of bulk silicon particulates. Experiments run under vacuum and in a pressurized hydrogen environment bracket conditions of empty and full hydrogen storage vessels, respectively. Curve-fitting of the heating profiles at various distances from an external heat source is used to derive both a time delay and a characteristic time constant. System performance metrics of a hydrogen storage subsystem are derived from the experimental results. A techno-economic analysis of the silicon and metal foam provides comparison with other methods of storing hydrogen for mobile and portable applications.
Keywords: conduction, convection, kinetics, fuel cell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694104 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.
Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912103 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter
Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.Keywords: accumulated histogram, water level detection, band pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999102 Estimation of Buffer Size of Internet Gateway Server via G/M/1 Queuing Model
Authors: Dr. L.K. Singh, Dr. R. M. L, Riktesh Srivastava
Abstract:
How to efficiently assign system resource to route the Client demand by Gateway servers is a tricky predicament. In this paper, we tender an enhanced proposal for autonomous recital of Gateway servers under highly vibrant traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.Keywords: Gateway Server, G/M/1 Queuing Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594101 Attribute Weighted Class Complexity: A New Metric for Measuring Cognitive Complexity of OO Systems
Authors: Dr. L. Arockiam, A. Aloysius
Abstract:
In general, class complexity is measured based on any one of these factors such as Line of Codes (LOC), Functional points (FP), Number of Methods (NOM), Number of Attributes (NOA) and so on. There are several new techniques, methods and metrics with the different factors that are to be developed by the researchers for calculating the complexity of the class in Object Oriented (OO) software. Earlier, Arockiam et.al has proposed a new complexity measure namely Extended Weighted Class Complexity (EWCC) which is an extension of Weighted Class Complexity which is proposed by Mishra et.al. EWCC is the sum of cognitive weights of attributes and methods of the class and that of the classes derived. In EWCC, a cognitive weight of each attribute is considered to be 1. The main problem in EWCC metric is that, every attribute holds the same value but in general, cognitive load in understanding the different types of attributes cannot be the same. So here, we are proposing a new metric namely Attribute Weighted Class Complexity (AWCC). In AWCC, the cognitive weights have to be assigned for the attributes which are derived from the effort needed to understand their data types. The proposed metric has been proved to be a better measure of complexity of class with attributes through the case studies and experimentsKeywords: Software Complexity, Attribute Weighted Class Complexity, Weighted Class Complexity, Data Type
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121100 Leveraging Quality Metrics in Voting Model Based Thread Retrieval
Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim
Abstract:
Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.Keywords: Content quality, Forum search, Thread retrieval, Voting techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176299 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris
Abstract:
The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.Keywords: Energy efficiency, handover, HetNets, MADM, small cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49698 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Authors: C. Lanzerstorfer
Abstract:
Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116097 Application of Build-up and Wash-off Models for an East-Australian Catchment
Authors: Iqbal Hossain, Monzur Alam Imteaz, Mohammed Iqbal Hossain
Abstract:
Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.Keywords: Calibration, Model Parameters, Suspended Solids, TotalNitrogen, Total Phosphorus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218396 Processing the Medical Sensors Signals Using Fuzzy Inference System
Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi
Abstract:
Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196795 Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model
Authors: L. K. Singh, Riktesh Srivastava
Abstract:
How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.Keywords: M/M/1, M/G/1, G/M/1, G/G/1, Gateway Servers, Buffer Estimation, Waiting Time, Queuing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193694 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211793 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018
Authors: M. Sitoe, O. Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.
Keywords: Evasion and retention, cross validation, bagging, stacking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11992 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios
Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong
Abstract:
This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.
Keywords: Computational analysis, damage scenarios, electronic road signs, finite element, welded connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38991 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks
Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor
Abstract:
The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132790 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)
Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,
Abstract:
One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.
Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202189 A Cognitive Measurement of Complexity and Comprehension for Object-Oriented Code
Authors: Amit Kumar Jakhar, Kumar Rajnish
Abstract:
Inherited complexity is one of the difficult tasks in software engineering field. Further, it is said that there is no physical laws or standard guidelines suit for designing different types of software. Hence, to make the software engineering as a matured engineering discipline like others, it is necessary that it has its own theoretical frameworks and laws. Software designing and development is a human effort which takes a lot of time and considers various parameters for successful completion of the software. The cognitive informatics plays an important role for understanding the essential characteristics of the software. The aim of this work is to consider the fundamental characteristics of the source code of Object-Oriented software i.e. complexity and understandability. The complexity of the programs is analyzed with the help of extracted important attributes of the source code, which is further utilized to evaluate the understandability factor. The aforementioned characteristics are analyzed on the basis of 16 C++ programs by distributing them to forty MCA students. They all tried to understand the source code of the given program and mean time is taken as the actual time needed to understand the program. For validation of this work, Briand’s framework is used and the presented metric is also evaluated comparatively with existing metric which proves its robustness.
Keywords: Software metrics, object-oriented, complexity, cognitive weight, understandability, basic control structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112288 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios was compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.
Keywords: Portfolio management performance, network analysis, centrality measurements, Sharpe ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40887 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA
Authors: Deepti Tamrakar, Pritee Khanna
Abstract:
This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174086 Design and Testing of Nanotechnology Based Sequential Circuits Using MX-CQCA Logic in VHDL
Authors: K. Maria Agnes, J. Joshua Bapu
Abstract:
This paper impart the design and testing of Nanotechnology based sequential circuits using multiplexer conservative QCA (MX-CQCA) logic gates, which is easily testable using only two vectors. This method has great prospective in the design of sequential circuits based on reversible conservative logic gates and also smashes the sequential circuits implemented in traditional gates in terms of testability. Reversible circuits are similar to usual logic circuits except that they are built from reversible gates. Designs of multiplexer conservative QCA logic based two vectors testable double edge triggered (DET) sequential circuits in VHDL language are also accessible here; it will also diminish intricacy in testing side. Also other types of sequential circuits such as D, SR, JK latches are designed using this MX-CQCA logic gate. The objective behind the proposed design methodologies is to amalgamate arithmetic and logic functional units optimizing key metrics such as garbage outputs, delay, area and power. The projected MX-CQCA gate outshines other reversible gates in terms of the intricacy, delay.
Keywords: Conservative logic, Double edge triggered (DET) flip flop, majority voters, MX-CQCA gate, reversible logic, Quantum dot Cellular automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229285 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches
Authors: Fereydoon Sarmadian, Ali Keshavarzi
Abstract:
Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.
Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181984 Cartoon Effect and Ambient Illumination Based Depth Perception Assessment of 3D Video
Authors: G. Nur
Abstract:
Monitored 3-Dimensional (3D) video experience can be utilized as “feedback information” to fine tune the service parameters for providing a better service to the demanding 3D service customers. The 3D video experience which includes both video quality and depth perception is influenced by several contextual and content related factors (e.g., ambient illumination condition, content characteristics, etc) due to the complex nature of the 3D video. Therefore, effective factors on this experience should be utilized while assessing it. In this paper, structural information of the depth map sequences of the 3D video is considered as content related factor effective on the depth perception assessment. Cartoon-like filter is utilized to abstract the significant depth levels in the depth map sequences to determine the structural information. Moreover, subjective experiments are conducted using 3D videos associated with cartoon-like depth map sequences to investigate the effectiveness of ambient illumination condition, which is a contextual factor, on depth perception. Using the knowledge gained through this study, 3D video experience metrics can be developed to deliver better service to the 3D video service users.
Keywords: 3D Video, Ambient Illumination, Cartoon Effect, Depth Perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172283 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.
Keywords: Camera calibration, Ice detection, ice load measurements, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125782 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.
Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50581 Operating Equipment Effectiveness with a Reliability Indicator
Authors: Carl D. Hays III
Abstract:
The purpose of this theory paper is to add a reliability indicator to Operating Equipment Effectiveness (OpEE) which is used to evaluate the productivity of machines and equipment with wheels and tracks. OpEE is a derivative of Overall Equipment Effectiveness (OEE) which has been widely used for many decades in factories that manufacture products. OEE has three variables, Availability Rate, Work Rate, and Quality Rate. When OpEE was converted from OEE, the Quality Rate variable was replaced with Travel Rate. Travel Rate is essentially utilization which is a common performance indicator in machines and equipment. OpEE was designed for machines operated in remote locations such as forests, roads, fields, and farms. This theory paper intends to add the Quality Rate variable back to OpEE by including a reliability indicator in the dashboard view. This paper will suggest that the OEE quality variable can be used with a reliability metric and combined with the OpEE score. With this dashboard view of both performance metrics and reliability, fleet managers will have a more complete understanding of equipment productivity and reliability. This view will provide both leading and lagging indicators of performance in machines and equipment. The lagging indicators will indicate the trends and the leading indicators will provide an overall performance score to manage.
Keywords: Operating Equipment Effectiveness, Operating Equipment Effectiveness, IoT, Contamination Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50780 An Assessment of the Hip Muscular Imbalance for Patients with Rheumatism
Authors: Anthony Bawa, Konstantinos Banitsas
Abstract:
Rheumatism is a muscular disorder that affects the muscles of the upper and lower limbs. This condition could potentially progress to impair the movement of patients. This study aims to investigate the hip muscular imbalance in patients with chronic rheumatism. A clinical trial involving a total of 15 participants, made up of 10 patients and five control subjects, took place in KATH Hospital between August and September. Participants recruited for the study were of age 54 ± 8 years, weight 65 ± 8 kg, and height 176 ± 8 cm. Muscle signals were recorded from the rectus femoris, and vastus lateralis on the right and left hip of participants. The parameters used in determining the hip muscular imbalances were the maximum voluntary contraction (MVC%), the mean difference, and hip muscle fatigue levels. The mean signals were compared using a t-test, and the metrics for muscle fatigue assessment were based on the root mean square (RMS), mean absolute value (MAV) and mean frequency (MEF), which were computed between the hip muscles of participants. The results indicated that there were significant imbalances in the muscle coactivity between the right and left hip muscles of patients. The patients’ MVC values were observed to be above 10% when compared with control subjects. Furthermore, the mean difference was seen to be higher with p > 0.002 among patients, which indicated clear differences in the hip muscle contraction activities. The findings indicate significant hip muscular imbalances for patients with rheumatism compared with control subjects. Information about the imbalances among patients will be useful for clinicians in designing therapeutic muscle-strengthening exercises.
Keywords: Muscular, imbalances, rheumatism, hip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163