Search results for: feature selection
1515 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles
Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou
Abstract:
The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.
Keywords: Fault detection, feature selection, machine learning, predictive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7801514 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
Authors: H. El Fadili, K. Zenkouar, H. Qjidaa
Abstract:
This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621513 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques
Authors: C. Ardil
Abstract:
This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.
Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5851512 Integrated ACOR/IACOMV-R-SVM Algorithm
Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud
Abstract:
A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8781511 Continuous Feature Adaptation for Non-Native Speech Recognition
Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern
Abstract:
The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32161510 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19541509 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets
Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T
Abstract:
Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.
Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28371508 A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection
Authors: C. Ardil
Abstract:
This paper considers a comparative analysis of multiple criteria decision making analysis methods for strategic, tactical, and operational decisions in military fighter aircraft selection for the air force fleet planning. The evaluation criteria governing the decision analysis process are determined from the literature for the three existing military combat aircraft. Military fighter aircraft selection problem is structured using "preference analysis for reference ideal solution (PARIS)” approach in multiple criteria decision analysis (MCDMA). Systematic comparisons were made with existing MCDMA methods (PARIS, and TOPSIS) to verify the stability and accuracy of the results obtained. The proposed integrated MCDMA systematic approach is expected to address the issues encountered in the aircraft selection process. The comparative analysis results show that the proposed method is an effective and accurate tool that can help analysts make better strategic, tactical, and operational decisions.
Keywords: aircraft, military fighter aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, Saab Gripen, Dassault Rafale, Eurofighter Typhoon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5741507 Vendor Selection and Supply Quotas Determination by using Revised Weighting Method and Multi-Objective Programming Methods
Authors: Tunjo Perić, Marin Fatović
Abstract:
In this paper a new methodology for vendor selection and supply quotas determination (VSSQD) is proposed. The problem of VSSQD is solved by the model that combines revised weighting method for determining the objective function coefficients, and a multiple objective linear programming (MOLP) method based on the cooperative game theory for VSSQD. The criteria used for VSSQD are: (1) purchase costs and (2) product quality supplied by individual vendors. The proposed methodology has been tested on the example of flour purchase for a bakery with two decision makers.Keywords: Cooperative game theory, multiple objective linear programming, revised weighting method, vendor selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19681506 Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS)
Authors: C. Ardil
Abstract:
Multiple criteria decision making analysis (MCDMA) methods are applied to many real - life problems in different fields of engineering science and technology. The "preference analysis for reference ideal solution (PARIS)" method is proposed for an efficient MCDMA evaluation of decision problems. The multiple criteria aircraft evaluation approach is based on the integrated the mean weight, entropy weight, PARIS, and TOPSIS method, which eliminates the subjective importance weight assignment process. The evaluation criteria were identified from an extensive literature review of aircraft selection process. The aim of this study is to propose an efficient methodology for handling the aircraft selection process in which the proposed method solves effectively the MCDMA problem. A numerical example is presented to demonstrate the applicability and validity of the proposed MCDMA approach.
Keywords: aircraft selection, aircraft, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, VIKOR, ELECTRE, PROMETHEE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5341505 Freighter Aircraft Selection Using Entropic Programming for Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper proposes entropic programming for the freighter aircraft selection problem using the multiple criteria decision analysis method. The study aims to propose a systematic and comprehensive framework by focusing on the perspective of freighter aircraft selection. In order to achieve this goal, an integrated entropic programming approach was proposed to evaluate and rank alternatives. The decision criteria and aircraft alternatives were identified from the research data analysis. The objective criteria weights were determined by the mean weight method and the standard deviation method. The proposed entropic programming model was applied to a practical decision problem for evaluating and selecting freighter aircraft. The proposed entropic programming technique gives robust, reliable, and efficient results in modeling decision making analysis problems. As a result of entropic programming analysis, Boeing B747-8F, a freighter aircraft alternative ( a3), was chosen as the most suitable freighter aircraft candidate.
Keywords: entropic programming, additive weighted model, multiple criteria decision making analysis, MCDMA, TOPSIS, aircraft selection, freighter aircraft, Boeing B747-8F, Boeing B777F, Airbus A350F
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5481504 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach
Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi
Abstract:
In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.Keywords: Green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14231503 Multi-Scale Gabor Feature Based Eye Localization
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Dusik Oh, Jaemin Kim, Seongwon Cho
Abstract:
Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.Keywords: Eye Localization, Gabor features, Multi-scale, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18191502 Selection of a Tower Crane Using Augmented Reality in Smart Devices
Authors: Myunghoun Jang, Yongkyu Yi
Abstract:
Appropriate selection of lifting equipments for a high-rise building construction project is one of the important factors to the project’s success. Proper position of a tower crane on a construction site is so important to be determined by an expert or an experienced construction manager who draws working range of a tower crane and moves it over a 2D (dimensional) site layout plan. But it is not usual to use 3D CAD, BIM or virtual reality for temporary facility planning or selection of a tower crane. This study proposes a method to use augmented reality to select proper position of tower cranes. An augmented reality prototype is implemented on a smart device to verify the practicability of the proposed method.
Keywords: Augmented Reality, Construction Planning, Site Layout, Temporary Facility Management, Tower Crane
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35401501 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis
Authors: C. Ardil
Abstract:
Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3851500 Optimizing Spatial Trend Detection By Artificial Immune Systems
Authors: M. Derakhshanfar, B. Minaei-Bidgoli
Abstract:
Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20451499 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18281498 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection
Authors: C. Ardil
Abstract:
Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.
Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4711497 Talent Selection for Present Conception of Women Sports Gymnastics and Practical Verification of the Test Battery
Authors: G. Bago, P. Hedbávný, M. Kalichová
Abstract:
The aim of the contribution is to project and consequently verify a testing battery which in practice would facilitate the selection of talented gymnasts for current concept of men´ s gymnastics. Based on study of professional literature a test array consisting of three parts projected – power testing, speed testing and flexibility testing– was projected. The evaluating scales used in the tests are standardized. This test array was applied to girls aged 6 - 7 during recruitment for Sokol Brno I. and SG Pelhrimov Gymnastic Club. After 6 months of training activity the projected set of tests was applied again. The results were evaluated through observation and questionnaire and they were consequently transformed into charts. Recommendation for practice was proposed based on these results.
Keywords: Talent selection, sports gymnastics, power testing, speed testing, flexibility testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311496 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19301495 Multisensor Agent Based Intrusion Detection
Authors: Richard A. Wasniowski
Abstract:
In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181494 Aircraft Selection Using Preference Optimization Programming (POP)
Authors: C. Ardil
Abstract:
A multiple-criteria decision support system is proposed for the best aircraft selection decision. Various strategic, economic, environmental, and risk-related factors can directly or indirectly influence this choice, and they should be taken into account in the decision-making process. The paper suggests a multiple-criteria analysis to aid in the airline management's decision-making process when choosing an appropriate aircraft. In terms of the suggested approach, an integrated entropic preference optimization programming (POP) for fleet modeling risk analysis is applied. The findings of the study of multiple criteria analysis indicate that the A321(neo) aircraft type is the best alternative in this particular optimization instance. The proposed methodology can be applied to other complex engineering problems involving multiple criteria analysis.
Keywords: Aircraft selection, decision making, multiple criteria decision making, preference optimization programming, POP, entropic weight method, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6241493 Non-negative Principal Component Analysis for Face Recognition
Abstract:
Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941492 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters
Authors: S. Souli, Z. Lachiri
Abstract:
In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.
To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.
Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441491 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17791490 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21061489 Fragile Watermarking for Color Images Using Thresholding Technique
Authors: Kuo-Cheng Liu
Abstract:
In this paper, we propose ablock-wise watermarking scheme for color image authentication to resist malicious tampering of digital media. The thresholding technique is incorporated into the scheme such that the tampered region of the color image can be recovered with high quality while the proofing result is obtained. The watermark for each block consists of its dual authentication data and the corresponding feature information. The feature information for recovery iscomputed bythe thresholding technique. In the proofing process, we propose a dual-option parity check method to proof the validity of image blocks. In the recovery process, the feature information of each block embedded into the color image is rebuilt for high quality recovery. The simulation results show that the proposed watermarking scheme can effectively proof the tempered region with high detection rate and can recover the tempered region with high quality.
Keywords: thresholding technique, tamper proofing, tamper recovery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311488 Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space
Authors: Vichai Rungreunganaun, Chirawat Woarawichai
Abstract:
The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum storage space for the decision maker in each period is considered. The decision maker needs to determine what products to order in what quantities with which suppliers in which periods. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer programming and is solved with the GAs. The detailed computation results are presented.Keywords: Genetic Algorithms, Inventory lot-sizing, Supplier selection, Storage space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21521487 An Evaluation of Algorithms for Single-Echo Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers' performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.
Keywords: Classification, neuro-spike coding, non-parametricmodel, parametric model, Gaussian mixture, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681486 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung
Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner
Abstract:
Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.
Keywords: lung cancer, micro arrays, data mining, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753