Search results for: universe acceleration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 668

Search results for: universe acceleration

638 A Study on the Calculation of Bearing Life of Electric Motor Using Accelerated Life Test

Authors: Youn-Hwan Kim, Hae-Joong Kim, Jae-Won Moon

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out and it is compared with the bearing life expectancy by ISO 281.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 232
637 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit

Authors: Prabal Singh Verma

Abstract:

Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.

Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration

Procedia PDF Downloads 353
636 Limit State Evaluation of Bridge According to Peak Ground Acceleration

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim

Abstract:

In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.

Keywords: allowable stress, limit state, safety factor, peak ground acceleration

Procedia PDF Downloads 182
635 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor

Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee

Abstract:

Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.

Keywords: accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test

Procedia PDF Downloads 585
634 Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration

Authors: T. Martini, J. M. Martínez

Abstract:

An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate.

Keywords: algorithmic acceleration, fixed-point problems, nonlinear programming, quasi-newton method

Procedia PDF Downloads 466
633 A Study on the Application of Accelerated Life Test to Electric Motor for Machine Tools

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out, and it is compared with the life expectancy by finite element method (FEM) and bearing theory.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 252
632 Multi Universe Existence Based-On Quantum Relativity using DJV Circuit Experiment Interpretation

Authors: Muhammad Arif Jalil, Somchat Sonasang, Preecha Yupapin

Abstract:

This study hypothesizes that the universe is at the center of the universe among the white and black holes, which are the entangled pairs. The coupling between them is in terms of spacetime forming the universe and things. The birth of things is based on exchange energy between the white and black sides. That is, the transition from the white side to the black side is called wave-matter, where it has a speed faster than light with positive gravity. The transition from the black to the white side has a speed faster than light with negative gravity called a wave-particle. In the part where the speed is equal to light, the particle rest mass is formed. Things can appear to take shape here. Thus, the gravity is zero because it is the center. The gravitational force belongs to the Earth itself because it is in a position that is twisted towards the white hole. Therefore, it is negative. The coupling of black-white holes occurs directly on both sides. The mass is formed at the saturation and will create universes and other things. Therefore, it can be hundreds of thousands of universes on both sides of the B and white holes before reaching the saturation point of multi-universes. This work will use the DJV circuit that the research team made as an entangled or two-level system circuit that has been experimentally demonstrated. Therefore, this principle has the possibility for interpretation. This work explains the emergence of multiple universes and can be applied as a practical guideline for searching for universes in the future. Moreover, the results indicate that the DJV circuit can create the elementary particles according to Feynman's diagram with rest mass conditions, which will be discussed for fission and fusion applications.

Keywords: multi-universes, feynman diagram, fission, fusion

Procedia PDF Downloads 37
631 Research of the Rotation Magnetic Field Current Driven Effect on Pulsed Plasmoid Acceleration of Electric Propulsion

Authors: X. F. Sun, X. D. Wen, L. J. Liu, C. C. Wu, Y. H. Jia

Abstract:

The field reversed closed magnetic field configuration plasmoid has a potential for large thrust and high power propulsion missions such as deep space exploration due to its high plasma density and larger azimuthal current, which will be a most competitive program for the next generation electric propulsion technology. Moreover, without the electrodes, it also has a long lifetime. Thus, the research on this electric propulsion technology is quite necessary. The plasmoid will be formatted and accelerated by applying a rotation magnetic field (RMF) method. And, the essence of this technology lies on the generation of the azimuthal electron currents driven by RMF. Therefore, the effect of RMF current on the plasmoid acceleration efficiency is a concerned problem. In the paper, the influences of the penetration process of RMF in plasma, the relations of frequency and amplitude of input RF power with current strength and the RMF antenna configuration on the plasmoid acceleration efficiency will be given by a two-fluid numerical simulation method. The results show that the radio-frequency and input power have remarkable influence on the formation and acceleration of plasmoid. These results will provide useful advice for the development, and optimized designing of field reversed configuration plasmoid thruster.

Keywords: rotation magnetic field, current driven, plasma penetration, electric propulsion

Procedia PDF Downloads 89
630 A Review on the Problems of Constructing a Theory of Quantum Gravity

Authors: Amber Jamal, Imran Siddiqui, Syed Tanveer Iqbal

Abstract:

This review is aimed to shed some light on problems constructing a theory of spacetime and geometry in terms of all quantum degrees of freedom called ‘Quantum Gravity’. Such a theory, which is effective at all scales of distances and energies, describes the enigma of the beginning of the Universe, its possible end, and reducing to general relativity at large distances but in a semi-classical approximation. Furthermore, the theory of quantum gravity also describes the Universe as a whole and provides a description of most fundamental questions that have puzzled scientists for decades, such as: what is space, what is time, and what is the fundamental structure of the Universe, is the spacetime discrete, if it is, where does the continuum of spacetime come from at low energies and macroscopic scales and where does it emerge from its fundamentally discrete building blocks? Quantum Field Theory (QFT) is a framework which describes the microscopic properties and dynamics of the basic building blocks of any condensed matter system. In QFT, atoms are quanta of continuous fields. At smaller scales or higher energies, the continuum description of spacetime fails. Therefore, a new description is required in terms of microscopic constituents (atoms or molecules). The objective of this scientific endeavor is to discuss the above-mentioned problems rigorously and to discuss possible way-out of the problems.

Keywords: QFT, quantum degrees of freedom, quantum gravity, semi-classical approximation

Procedia PDF Downloads 90
629 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe

Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin

Abstract:

An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1 m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1 m and thus, the pipe was lengthened 1 m (based on the centreline length of the segment). Ignition was affected one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum over-pressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed of 63 m s-1 was observed in a gas explosion with bent pipe, greater by a factor of ~3 as compared with straight pipe (23 m s-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate which increases the flame speed.

Keywords: bending, gas explosion, bending, flame acceleration, over-pressure

Procedia PDF Downloads 379
628 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 393
627 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 428
626 Influence of Solenoid Configuration on Electromagnetic Acceleration of Plunger

Authors: Shreyansh Bharadwaj, Raghavendra Kollipara, Sijoy C. D., R. K. Mittal

Abstract:

Utilizing the Lorentz force to propel an electrically conductive plunger through a solenoid represents a fundamental application in electromagnetism. The parameters of the solenoid significantly influence the force exerted on the plunger, impacting its response. A parametric study has been done to understand the effect of these parameters on the force acting on the plunger. This study is done to determine the most optimal combination of parameters to obtain the fast response. Analysis has been carried out using an algorithm capable of simulating the scenario of a plunger undergoing acceleration within a solenoid. Authors have conducted an analysis focusing on several key configuration parameters of the solenoid. These parameters include the inter-layer gap (in the case of a multi-turn solenoid), different conductor diameters, varying numbers of turns, and diverse numbers of layers. Primary objective of this paper is to discern how alterations in these parameters affect the force applied to the plunger. Through extensive numerical simulations, a dataset has been generated and utilized to construct informative plots. These plots provide visual representations of the relationships between the solenoid configuration parameters and the resulting force exerted on the plunger, which can further be used to deduce scaling laws. This research endeavors to offer valuable insights into optimizing solenoid configurations for enhanced electromagnetic acceleration, thereby contributing to advancements in electromagnetic propulsion technology.

Keywords: Lorentz force, solenoid configuration, electromagnetic acceleration, parametric analysis, simulation

Procedia PDF Downloads 15
625 Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains

Authors: M. Qorbani

Abstract:

Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection.

Keywords: neuromuscular response, sEMG, lateral ankle sprain, posture.

Procedia PDF Downloads 452
624 Analysis of Global Social Responsibilities of Social Studies Pre-Service Teachers Based on Several Variables

Authors: Zafer Cakmak, Birol Bulut, Cengiz Taskiran

Abstract:

Technological advances, the world becoming smaller and increasing world population increase our interdependence with individuals that we maybe never meet face to face. It is impossible for the modern individuals to escape global developments and their impact. Furthermore, it is very unlikely for the global societies to turn back from the path they are in. These effects of globalization in fact encumber the humankind at a certain extend. We succumb to these responsibilities for we desire a better future, a habitable world and a more peaceful life. In the present study, global responsibility levels of the participants were measured and the significance of global reactions that individuals have to develop on global issues was reinterpreted under the light of the existing literature. The study was conducted with general survey model, one of the survey methodologies General survey models are surveys conducted on the whole universe or a group, sample or sampling taken from the universe to arrive at a conclusion about the universe, which includes a high number of elements. The study was conducted with data obtained from 350 pre-service teachers attending 2016 spring semester to determine 'Global Social Responsibility' levels of social studies pre-service teachers based on several variables. Collected data were analyzed using SPSS 21.0 software. T-test and ANOVA were utilized in the data analysis.

Keywords: social studies, globalization, global social responsibility, education

Procedia PDF Downloads 370
623 Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion

Authors: Xiaodong Wen, Lijuan Liu, Xinfeng Sun

Abstract:

A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster.

Keywords: electric space propulsion, field reversed configuration, rotating magnetic field, transport phenomena

Procedia PDF Downloads 106
622 Creation and Annihilation of Spacetime Elements

Authors: Dnyanesh P. Mathur, Gregory L. Slater

Abstract:

Gravitation and the expansion of the universe at a large scale are generally regarded as two completely distinct phenomena. Yet, in general, relativity theory, they both manifest as 'curvature' of spacetime. We propose a hypothesis which treats these two 'curvature-producing' phenomena as aspects of an underlying process. This process treats spacetime itself as composed of discrete units (Plancktons) and is 'dynamic' in the sense that these elements of spacetime are continually being both created and annihilated. It is these two complementary processes of Planckton creation and Planckton annihilation which manifest themselves as - 'cosmic expansion' on the one hand and as 'gravitational attraction’ on the other. The Planckton hypothesis treats spacetime as a perfect fluid in the same manner as the co-moving frame of reference of Friedman equations and the Gullstrand-Painleve metric; i.e.Planckton hypothesis replaces 'curvature' of spacetime by the 'flow' of Plancktons (spacetime). Here we discuss how this perspective may allow a unified description of both cosmological and gravitational acceleration as well as providing a mechanism for inducing an irreducible action at every point associated with the creation and annihilation of Plancktons, which could be identified as the zero point energy.

Keywords: discrete spacetime, spacetime flow, zero point energy, planktons

Procedia PDF Downloads 83
621 Early Detection of Major Earthquakes Using Broadband Accelerometers

Authors: Umberto Cerasani, Luca Cerasani

Abstract:

Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.

Keywords: earthquake, accelerometer, earthquake forecasting, seism

Procedia PDF Downloads 113
620 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver

Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko

Abstract:

The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines

Procedia PDF Downloads 309
619 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli

Abstract:

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible gross vehicle weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Keywords: heavy vehicle, road safety, vehicle stability, lateral acceleration, gross vehicle weight

Procedia PDF Downloads 505
618 Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity

Authors: Reena Behal, D. P. Shukla

Abstract:

In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value.

Keywords: Bulk Viscous Bianchi Type V Cosmological Model, hubble constants, gravitational constant, cosmological constants

Procedia PDF Downloads 149
617 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: acceleration, backfill, earthquake, soil, PGA

Procedia PDF Downloads 354
616 Prediction of Maximum Inter-Story Drifts of Steel Frames Using Intensity Measures

Authors: Edén Bojórquez, Victor Baca, Alfredo Reyes-Salazar, Jorge González

Abstract:

In this paper, simplified equations to predict maximum inter-story drift demands of steel framed buildings are proposed in terms of two ground motion intensity measures based on the acceleration spectral shape. For this aim, the maximum inter-story drifts of steel frames with 4, 6, 8 and 10 stories subjected to narrow-band ground motion records are estimated and compared with the spectral acceleration at first mode of vibration Sa(T1) which is commonly used in earthquake engineering and seismology, and with a new parameter related with the structural response known as INp. It is observed that INp is the parameter best related with the structural response of steel frames under narrow-band motions. Finally, equations to compute maximum inter-story drift demands of steel frames as a function of spectral acceleration and INp are proposed.

Keywords: intensity measures, spectral shape, steel frames, peak demands

Procedia PDF Downloads 360
615 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 57
614 Intelligent Semi-Active Suspension Control of a Electric Model Vehicle System

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A four-wheel drive electric vehicle was built with hub DC motors and FPGA embedded control structure. A 40 steps manual adjusting motorcycle shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. An intelligent fuzzy logic controller was proposed to real-time search appropriate damping ratio based on vehicle running condition. Then, a robust fuzzy sliding mode controller (FSMC) is employed to regulate the target damping ratio of each wheel axis semi-active suspension system. Finally, different road surface conditions are chosen to evaluate the control performance of this semi-active suspension and compare with that of passive system based on wheel axis acceleration signal.

Keywords: acceleration, FPGA, Fuzzy sliding mode control, semi-active suspension

Procedia PDF Downloads 387
613 Inter Religion Harmony and World Peace: Theory from Shah Wali Ullah's Philosophy

Authors: Muhammad Usman Ghani

Abstract:

Religious tolerance is essential for the establishment of peace in the world. In the system created by Almighty Allah where a lot of diversity is found, still, this world holds unity itself. In today's world, human beings have been divided into clashes of civilizations or divided on the basis of religions or lingual differences. A religious scholar of Indo- Pak subcontinent describes four ethics, on the basis of which all religions of the world can unite. He says in his philosophy of religion that, there is a number of elements common in all religions but four are very common and they are: cleanliness, nobel deeds, relation to Almighty (existence of Almighty) and justice. He says that this universe also holds its integrity in itself. All humans are different in their attributes but to be a human being is common in them. Similarly, all species of the universe are different in their nature, but to be the creature of God is commonly shared by all of them.

Keywords: inter-religious relation, peace and harmony, unity, four common ethics/virtues

Procedia PDF Downloads 311
612 Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS

Authors: Dawei Cai

Abstract:

In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.

Keywords: NFC, ubiquitous computing, guide sysem, MEMS

Procedia PDF Downloads 380
611 Modelling the Effect of Alcohol Consumption on the Accelerating and Braking Behaviour of Drivers

Authors: Ankit Kumar Yadav, Nagendra R. Velaga

Abstract:

Driving under the influence of alcohol impairs the driving performance and increases the crash risks worldwide. The present study investigated the effect of different Blood Alcohol Concentrations (BAC) on the accelerating and braking behaviour of drivers with the help of driving simulator experiments. Eighty-two licensed Indian drivers drove on the rural road environment designed in the driving simulator at BAC levels of 0.00%, 0.03%, 0.05%, and 0.08% respectively. Driving performance was analysed with the help of vehicle control performance indicators such as mean acceleration and mean brake pedal force of the participants. Preliminary analysis reported an increase in mean acceleration and mean brake pedal force with increasing BAC levels. Generalized linear mixed models were developed to quantify the effect of different alcohol levels and explanatory variables such as driver’s age, gender and other driver characteristic variables on the driving performance indicators. Alcohol use was reported as a significant factor affecting the accelerating and braking performance of the drivers. The acceleration model results indicated that mean acceleration of the drivers increased by 0.013 m/s², 0.026 m/s² and 0.027 m/s² for the BAC levels of 0.03%, 0.05% and 0.08% respectively. Results of the brake pedal force model reported that mean brake pedal force of the drivers increased by 1.09 N, 1.32 N and 1.44 N for the BAC levels of 0.03%, 0.05% and 0.08% respectively. Age was a significant factor in both the models where one year increase in drivers’ age resulted in 0.2% reduction in mean acceleration and 19% reduction in mean brake pedal force of the drivers. It shows that driving experience could compensate for the negative effects of alcohol to some extent while driving. Female drivers were found to accelerate slower and brake harder as compared to the male drivers which confirmed that female drivers are more conscious about their safety while driving. It was observed that drivers who were regular exercisers had better control on their accelerator pedal as compared to the non-regular exercisers during drunken driving. The findings of the present study revealed that drivers tend to be more aggressive and impulsive under the influence of alcohol which deteriorates their driving performance. Drunk driving state can be differentiated from sober driving state by observing the accelerating and braking behaviour of the drivers. The conclusions may provide reference in making countermeasures against drinking and driving and contribute to traffic safety.

Keywords: alcohol, acceleration, braking behaviour, driving simulator

Procedia PDF Downloads 120
610 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics

Authors: Surendra Mund

Abstract:

At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.

Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions

Procedia PDF Downloads 25
609 Seismic Hazard Assessment of Tehran

Authors: Dorna Kargar, Mehrasa Masih

Abstract:

Due to its special geological and geographical conditions, Iran has always been exposed to various natural hazards. Earthquake is one of the natural hazards with random nature that can cause significant financial damages and casualties. This is a serious threat, especially in areas with active faults. Therefore, considering the population density in some parts of the country, locating and zoning high-risk areas are necessary and significant. In the present study, seismic hazard assessment via probabilistic and deterministic method for Tehran, the capital of Iran, which is located in Alborz-Azerbaijan province, has been done. The seismicity study covers a range of 200 km from the north of Tehran (X=35.74° and Y= 51.37° in LAT-LONG coordinate system) to identify the seismic sources and seismicity parameters of the study region. In order to identify the seismic sources, geological maps at the scale of 1: 250,000 are used. In this study, we used Kijko-Sellevoll's method (1992) to estimate seismicity parameters. The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitude Mmax, activity rate λ, and the Gutenberg-Richter parameter b) from incomplete data files is extended to the case of uncertain magnitude values. By the combination of seismicity and seismotectonic studies of the site, the acceleration with antiseptic probability may happen during the useful life of the structure is calculated with probabilistic and deterministic methods. Applying the results of performed seismicity and seismotectonic studies in the project and applying proper weights in used attenuation relationship, maximum horizontal and vertical acceleration for return periods of 50, 475, 950 and 2475 years are calculated. Horizontal peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.12g, 0.30g, 0.37g and 0.50, and Vertical peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.08g, 0.21g, 0.27g and 0.36g.

Keywords: peak ground acceleration, probabilistic and deterministic, seismic hazard assessment, seismicity parameters

Procedia PDF Downloads 45