Search results for: temporal cues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1192

Search results for: temporal cues

832 The Relationship between the Content of Inner Human Experience and Well-Being: An Experience Sampling Study

Authors: Xinqi Guo, Karen R. Dobkins

Abstract:

Background and Objectives: Humans are probably the only animals whose minds are constantly filled with thoughts, feelings and emotions. Previous studies have investigated human minds from different dimensions, including its proportion of time for not being present, its representative format, its personal relevance, its temporal locus, and affect valence. The current study aims at characterizing human mind by employing Experience Sampling Methods (ESM), a self-report research procedure for studying daily experience. This study emphasis on answering the following questions: 1) How does the contents of the inner experience vary across demographics, 2) Are certain types of inner experiences correlated with level of mindfulness and mental well-being (e.g., are people who spend more time being present happier, and are more mindful people more at-present?), 3) Will being prompted to report one’s inner experience increase mindfulness and mental well-being? Methods: Participants were recruited from the subject pool of UC San Diego or from the social media. They began by filling out two questionnaires: 1) Five Facet Mindfulness Questionnaire-Short Form, and 2) Warwick-Edinburgh Mental Well-being Scale, and demographic information. Then they participated in the ESM part by responding to the prompts which contained questions about their real-time inner experience: if they were 'at-present', 'mind-wandering', or 'zoned-out'. The temporal locus, the clarity, and the affect valence, and the personal importance of the thought they had the moment before the prompt were also assessed. A mobile app 'RealLife Exp' randomly delivered these prompts 3 times/day for 6 days during wake-time. After the 6 days, participants completed questionnaire (1) and (2) again. Their changes of score were compared to a control group who did not participate in the ESM procedure (yet completed (1) and (2) one week apart). Results: Results are currently preliminary as we continue to collect data. So far, there is a trend that participants are present, mind-wandering and zoned-out, about 53%, 23% and 24% during wake-time, respectively. The thoughts of participants are ranked to be clearer and more neutral if they are present vs. mind-wandering. Mind-wandering thoughts are 66% about the past, consisting 80% of inner speech. Discussion and Conclusion: This study investigated the subjective account of human mind by a tool with high ecological validity. And it broadens the understanding of the relationship between contents of mind and well-being.

Keywords: experience sampling method, meta-memory, mindfulness, mind-wandering

Procedia PDF Downloads 107
831 A Study on the Measurement of Spatial Mismatch and the Influencing Factors of “Job-Housing” in Affordable Housing from the Perspective of Commuting

Authors: Daijun Chen

Abstract:

Affordable housing is subsidized by the government to meet the housing demand of low and middle-income urban residents in the process of urbanization and to alleviate the housing inequality caused by market-based housing reforms. It is a recognized fact that the living conditions of the insured have been improved while constructing the subsidized housing. However, the choice of affordable housing is mostly in the suburbs, where the surrounding urban functions and infrastructure are incomplete, resulting in the spatial mismatch of "jobs-housing" in affordable housing. The main reason for this problem is that the residents of affordable housing are more sensitive to the spatial location of their residence, but their selectivity and controllability to the housing location are relatively weak, which leads to higher commuting costs. Their real cost of living has not been effectively reduced. In this regard, 92 subsidized housing communities in Nanjing, China, are selected as the research sample in this paper. The residents of the affordable housing and their commuting Spatio-temporal behavior characteristics are identified based on the LBS (location-based service) data. Based on the spatial mismatch theory, spatial mismatch indicators such as commuting distance and commuting time are established to measure the spatial mismatch degree of subsidized housing in different districts of Nanjing. Furthermore, the geographically weighted regression model is used to analyze the influencing factors of the spatial mismatch of affordable housing in terms of the provision of employment opportunities, traffic accessibility and supporting service facilities by using spatial, functional and other multi-source Spatio-temporal big data. The results show that the spatial mismatch of affordable housing in Nanjing generally presents a "concentric circle" pattern of decreasing from the central urban area to the periphery. The factors affecting the spatial mismatch of affordable housing in different spatial zones are different. The main reasons are the number of enterprises within 1 km of the affordable housing district and the shortest distance to the subway station. And the low spatial mismatch is due to the diversity of services and facilities. Based on this, a spatial optimization strategy for different levels of spatial mismatch in subsidized housing is proposed. And feasible suggestions for the later site selection of subsidized housing are also provided. It hopes to avoid or mitigate the impact of "spatial mismatch," promote the "spatial adaptation" of "jobs-housing," and truly improve the overall welfare level of affordable housing residents.

Keywords: affordable housing, spatial mismatch, commuting characteristics, spatial adaptation, welfare benefits

Procedia PDF Downloads 82
830 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel

Authors: Said Elkassimi, Said Safi, B. Manaut

Abstract:

This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.

Keywords: adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF

Procedia PDF Downloads 291
829 The Development of Chinese-English Homophonic Word Pairs Databases for English Teaching and Learning

Authors: Yuh-Jen Wu, Chun-Min Lin

Abstract:

Homophonic words are common in Mandarin Chinese which belongs to the tonal language family. Using homophonic cues to study foreign languages is one of the learning techniques of mnemonics that can aid the retention and retrieval of information in the human memory. When learning difficult foreign words, some learners transpose them with words in a language they are familiar with to build an association and strengthen working memory. These phonological clues are beneficial means for novice language learners. In the classroom, if mnemonic skills are used at the appropriate time in the instructional sequence, it may achieve their maximum effectiveness. For Chinese-speaking students, proper use of Chinese-English homophonic word pairs may help them learn difficult vocabulary. In this study, a database program is developed by employing Visual Basic. The database contains two corpora, one with Chinese lexical items and the other with English ones. The Chinese corpus contains 59,053 Chinese words that were collected by a web crawler. The pronunciations of this group of words are compared with words in an English corpus based on WordNet, a lexical database for the English language. Words in both databases with similar pronunciation chunks and batches are detected. A total of approximately 1,000 Chinese lexical items are located in the preliminary comparison. These homophonic word pairs can serve as a valuable tool to assist Chinese-speaking students in learning and memorizing new English vocabulary.

Keywords: Chinese, corpus, English, homophonic words, vocabulary

Procedia PDF Downloads 152
828 Effect of Cabbage and Cauliflower Emitted Volatile Organic Compounds on Foraging Response of Plutella xylostella

Authors: Sumbul Farhat, Pratyay Vaibhav, Sarah Jain, Kapinder Kumar, Archna Kumar

Abstract:

The Diamondback Moth, Plutella xylostella (Linnaeus), is a major pest of cole crops that causes approximately 50% loss in global production. The utilization of inorganic pesticides is reflected in the development of resistance to this pest. Thus, there is a great need for an eco-friendly, sustainable strategy for the control of this pest. Although this pest, several natural enemies are reported worldwide, none of them can control it efficiently. Therefore, a proposed study is planned to understand the Volatile Organic Compounds (VOCs) mediated signaling interaction mechanism of the plant, pest, and natural enemy. For VOCs collection during different deployment stages of Cabbage POI, Green Ball, Pusa Cabbage, Cabbage Local, Snowball 16, Kanchan Plus, Pusa Meghna, Farm Sona Hybrid F1, and Samridhi F1 Hybrid, the Solid-phase microextraction (SPME) method was employed. Characterization of VOCs was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The impact of collected VOCs was assessed through Y-Tube Bioassays. The results indicate that the Cabbage variety Green Ball shows maximum repellency for P. xylostella (-100%). The cues present in this variety may be exploited for efficient management of P. xylostella in the cole crop ecosystem.

Keywords: Plutella xylostella, cole crops, volatile organic compounds, GC-MS, Green Ball

Procedia PDF Downloads 91
827 Morphological Differentiation and Temporal Variability in Essential Oil Yield and Composition among Origanum vulgare ssp. hirtum L., Origanum onites L. and Origanum x intercedens from Ikaria Island (Greece)

Authors: A.Assariotakis, P. Vahamidis, P. Tarantilis, G. Economou

Abstract:

Greece, due to its geographical location and the particular climatic conditions, presents high biodiversity of Medicinal and Aromatic Plants. Among them, the genus Origanum not only presents a wide distribution, but it also has great economic importance. After extensive surveys in Ikaria Island (Greece), 3 species of the genus Origanum were identified, namely, Origanum vulgare ssp. hirtum (Greek oregano), Origanum onites (Turkish oregano) and Origanum x intercedens (hybrid), a naturally occurring hybrid between O. hirtum and O. onites. The purpose of this study was to determine their morphological as well as their temporal variability in essential oil yield and composition under field conditions. For this reason, a plantation of each species was created using vegetative propagation and was established at the experimental field of the Agricultural University of Athens (A.U.A.). From the establishment year and for the following two years (3 years of observations), several observations were taken during each growing season with the purpose of identifying the morphological differences among the studied species. Each year collected plant (at bloom stage) material was air-dried at room temperature in the shade. The essential oil content was determined by hydrodistillation using a Clevenger-type apparatus. The chemical composition of essential oils was investigated by Gas Chromatography-Mass Spectrometry (GC – MS). Significant differences were observed among the three oregano species in terms of plant height, leaf size, inflorescence features, as well as concerning their biological cycle. O. intercedens inflorescence presented more similarities with O. hirtum than with O. onites. It was found that calyx morphology could serve as a clear distinction feature between O. intercedens and O. hirtum. The calyx in O. hirtum presents five isometric teeth whereas in O. intercedens two high and three shorter. Essential oil content was significantly affected by genotype and year. O. hirtum presented higher essential oil content than the other two species during the first year of cultivation, however during the second year the hybrid (O. intercedens) recorded the highest values. Carvacrol, p-cymene and γ-terpinene were the main essential oil constituents of the three studied species. In O. hirtum carvacrol content varied from 84,28 - 93,35%, in O. onites from 86,97 - 91,89%, whereas in O. intercedens it was recorded the highest carvacrol content, namely from 89,25 - 97,23%.

Keywords: variability, oregano biotypes, essential oil, carvacrol

Procedia PDF Downloads 109
826 Towards Overturning the Dismal Mathematics Performance in Schools by Capitalizing on the Overlooked Cognitive Prowess for Adolescents to Learn Mathematics

Authors: Dudu Ka Ruth Mkhize

Abstract:

Adolescents are at the front and centre of poor mathematics performance in schools. Literature has concluded in some countries that there is a permanent and perpetual mathematics crisis in schools of the persistent poor performance in mathematics by teens. There is no shortage of interventions and research to solve this problem. However, none has capitalised on the cognitive prowess of adolescents, which was revealed at the turn of the century by the introduction of neuroimaging technologies such as structural and functional magnetic resonance imaging (sMRI and fMRI). This research found that brain growth during adolescence results in enhanced cognitive abilities essential for mathematics learning. This paper is based on the four-year case study of rural high school adolescents who had a negative attitude towards mathematics and hence were failing mathematics. But through a ten-day intervention where teaching revolved around invoking their cognitive ability, their attitude and motivation for mathematics changed for the better. The paper concludes that despite educational psychology being part of teacher education as well as education systems, there are numerous overlooked gems of psychological theories which have the potential to enhance academic achievement for youth in schools. A recommendation is made to take cues from positive psychology, whose establishment was a rejection of the dominance of the disease model in psychology. Similarly, the general perspective of poor mathematics performance can take a u-turn towards the cognitive ability acquired by adolescents because of their developmental stage.

Keywords: adolescence, cognitive growth, mathematics performance

Procedia PDF Downloads 43
825 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India

Authors: Rabindra K. Panda, Gurjeet Singh

Abstract:

The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.

Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation

Procedia PDF Downloads 283
824 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 283
823 RACK1 Integrates Light and Brassinosteroid Signaling to Coordinate Cell Division During Root Soil Penetration

Authors: Liang Jiansheng, Zhu Wei

Abstract:

Light and brassinosteroids are essential external and internal cues for plant survival. Although the coordination of light with phytohormone signals is crucial for plant growth and development, the molecular connection between light and brassinosteroid signaling during root soil penetration remains elusive. Here, we reveal that light-stabilized RACK1 couples a brassinosteroid signaling cascade to drive cell division in root meristems. RACK1 family scaffold proteins positively regulate light-induced the promotion of root elongation during soil penetration. Under the light condition, RACK1A interacts with both phyB and SPA1, then reinforces the phyB-SPA1 association to accumulate its abundance in roots. In response to brassinosteroid signals, RACK1A competes with BKI1 to attenuate the BRI1-BKI1 interaction, thereby leading to activating BRI1 actions in root development. Furthermore, RACK1A binds to BES1 to repress its DNA binding activity toward the target gene CYCD3;1. This ultimately allows to release the inhibition of CYCD3;1 transcription, and promotes cell division during root growth. Our study illustrates a new mechanistic model of how plants engage scaffold proteins in transducing light information to facilitate brassinosteroid signaling for root growth in the soil.

Keywords: root growth, cell division, light signaling, brassinosteroid signaling, soil penetration, scaffold protein, RACK1

Procedia PDF Downloads 41
822 An Overview of the Wind and Wave Climate in the Romanian Nearshore

Authors: Liliana Rusu

Abstract:

The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.

Keywords: numerical simulations, Romanian nearshore, waves, wind

Procedia PDF Downloads 314
821 A Comparative Study on Vowel Articulation in Malayalam Speaking Children Using Cochlear Implant

Authors: Deepthy Ann Joy, N. Sreedevi

Abstract:

Hearing impairment (HI) at an early age, identified before the onset of language development can reduce the negative effect on speech and language development of children. Early rehabilitation is very important in the improvement of speech production in children with HI. Other than conventional hearing aids, Cochlear Implants are being used in the rehabilitation of children with HI. However, delay in acquisition of speech and language milestones persist in children with Cochlear Implant (CI). Delay in speech milestones are reflected through speech sound errors. These errors reflect the temporal and spectral characteristics of speech. Hence, acoustical analysis of the speech sounds will provide a better representation of speech production skills in children with CI. The present study aimed at investigating the acoustic characteristics of vowels in Malayalam speaking children with a cochlear implant. The participants of the study consisted of 20 Malayalam speaking children in the age range of four and seven years. The experimental group consisted of 10 children with CI, and the control group consisted of 10 typically developing children. Acoustic analysis was carried out for 5 short (/a/, /i/, /u/, /e/, /o/) and 5 long vowels (/a:/, /i:/, /u:/, /e:/, /o:/) in word-initial position. The responses were recorded and analyzed for acoustic parameters such as Vowel duration, Ratio of the duration of a short and long vowel, Formant frequencies (F₁ and F₂) and Formant Centralization Ratio (FCR) computed using the formula (F₂u+F₂a+F₁i+F₁u)/(F₂i+F₁a). Findings of the present study indicated that the values for vowel duration were higher in experimental group compared to the control group for all the vowels except for /u/. Ratio of duration of short and long vowel was also found to be higher in experimental group compared to control group except for /i/. Further F₁ for all vowels was found to be higher in experimental group with variability noticed in F₂ values. FCR was found be higher in experimental group, indicating vowel centralization. Further, the results of independent t-test revealed no significant difference across the parameters in both the groups. It was found that the spectral and temporal measures in children with CI moved towards normal range. The result emphasizes the significance of early rehabilitation in children with hearing impairment. The role of rehabilitation related aspects are also discussed in detail which can be clinically incorporated for the betterment of speech therapeutic services in children with CI.

Keywords: acoustics, cochlear implant, Malayalam, vowels

Procedia PDF Downloads 118
820 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area

Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert

Abstract:

Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.

Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle

Procedia PDF Downloads 165
819 Insight2OSC: Using Electroencephalography (EEG) Rhythms from the Emotiv Insight for Musical Composition via Open Sound Control (OSC)

Authors: Constanza Levicán, Andrés Aparicio, Rodrigo F. Cádiz

Abstract:

The artistic usage of Brain-computer interfaces (BCI), initially intended for medical purposes, has increased in the past few years as they become more affordable and available for the general population. One interesting question that arises from this practice is whether it is possible to compose or perform music by using only the brain as a musical instrument. In order to approach this question, we propose a BCI for musical composition, based on the representation of some mental states as the musician thinks about sounds. We developed software, called Insight2OSC, that allows the usage of the Emotiv Insight device as a musical instrument, by sending the EEG data to audio processing software such as MaxMSP through the OSC protocol. We provide two compositional applications bundled with the software, which we call Mapping your Mental State and Thinking On. The signals produced by the brain have different frequencies (or rhythms) depending on the level of activity, and they are classified as one of the following waves: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz). These rhythms have been found to be related to some recognizable mental states. For example, the delta rhythm is predominant in a deep sleep, while beta and gamma rhythms have higher amplitudes when the person is awake and very concentrated. Our first application (Mapping your Mental State) produces different sounds representing the mental state of the person: focused, active, relaxed or in a state similar to a deep sleep by the selection of the dominants rhythms provided by the EEG device. The second application relies on the physiology of the brain, which is divided into several lobes: frontal, temporal, parietal and occipital. The frontal lobe is related to abstract thinking and high-level functions, the parietal lobe conveys the stimulus of the body senses, the occipital lobe contains the primary visual cortex and processes visual stimulus, the temporal lobe processes auditory information and it is important for memory tasks. In consequence, our second application (Thinking On) processes the audio output depending on the users’ brain activity as it activates a specific area of the brain that can be measured using the Insight device.

Keywords: BCI, music composition, emotiv insight, OSC

Procedia PDF Downloads 294
818 Response of a Bridge Crane during an Earthquake

Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale

Abstract:

During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.

Keywords: bridge crane, earthquake, dynamic analysis, explicit, implicit, impact

Procedia PDF Downloads 275
817 The Attentional Focus Impact on the Decision Making in Three-Game Situations in Tennis

Authors: Marina Tsetseli, Eleni Zetou, Maria Michalopoulou, Nikos Vernadakis

Abstract:

Game performance, besides the accuracy and the quality skills execution, depends heavily on where the athletes will focus their attention while performing a skill. The purpose of the present study was to examine and compare the effect of internal and external focus of attention instructions on the decision making in tennis at players 8-9 years old (M=8.4, SD=0.49). The participants (N=40) were divided into two groups and followed an intervention training program that lasted 4 weeks; first group (N=20) under internal focus of attention instructions and the second group (N=20) under external focus of attention instructions. Three measurements took place (pre-test, post-test, and retention test) in which the participants were video recorded while playing matches in real scoring conditions. GPAI (Game Performance Assessment Instrument) was used to evaluate decision making in three game situations; service, return of the service, baseline game. ANOVA repeated measures (2 groups x 3 measurements) revealed a significant interaction between groups and measurements. Specifically, the data analysis showed superiority of the group that was instructed to focus externally. The high scores of the external attention group were maintained at the same level at the third measurement as well, which indicates that the impact was concerning not only performance but also learning. Thus, cues that lead to an external focus of attention enhance the decision-making skill and therefore the game performance of the young tennis players.

Keywords: decision making, evaluation, focus of attention, game performance, tennis

Procedia PDF Downloads 322
816 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation

Authors: A. A. Soliman

Abstract:

The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.

Keywords: collocation method, MRLW equation, Quartic B-splines, solitons

Procedia PDF Downloads 276
815 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction

Authors: Leila Safazadeh, Brad Berron

Abstract:

Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.

Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting

Procedia PDF Downloads 199
814 Spatio-Temporal Dynamics of Snow Cover and Melt/Freeze Conditions in Indian Himalayas

Authors: Rajashree Bothale, Venkateswara Rao

Abstract:

Indian Himalayas also known as third pole with 0.9 Million SQ km area, contain the largest reserve of ice and snow outside poles and affect global climate and water availability in the perennial rivers. The variations in the extent of snow are indicative of climate change. The snow melt is sensitive to climate change (warming) and also an influencing factor to the climate change. A study of the spatio-temporal dynamics of snow cover and melt/freeze conditions is carried out using space based observations in visible and microwave bands. An analysis period of 2003 to 2015 is selected to identify and map the changes and trend in snow cover using Indian Remote Sensing (IRS) Advanced Wide Field Sensor (AWiFS) and Moderate Resolution Imaging Spectroradiometer(MODIS) data. For mapping of wet snow, microwave data is used, which is sensitive to the presence of liquid water in the snow. The present study uses Ku-band scatterometer data from QuikSCAT and Oceansat satellites. The enhanced resolution images at 2.25 km from the 13.6GHz sensor are used to analyze the backscatter response to dry and wet snow for the period of 2000-2013 using threshold method. The study area is divided into three major river basins namely Brahmaputra, Ganges and Indus which also represent the diversification in Himalayas as the Eastern Himalayas, Central Himalayas and Western Himalayas. Topographic variations across different zones show that a majority of the study area lies in 4000–5500 m elevation range and the maximum percent of high elevated areas (>5500 m) lies in Western Himalayas. The effect of climate change could be seen in the extent of snow cover and also on the melt/freeze status in different parts of Himalayas. Melt onset day increases from east (March11+11) to west (May12+15) with large variation in number of melt days. Western Himalayas has shorter melt duration (120+15) in comparison to Eastern Himalayas (150+16) providing lesser time for melt. Eastern Himalaya glaciers are prone for enhanced melt due to large melt duration. The extent of snow cover coupled with the status of melt/freeze indicating solar radiation can be used as precursor for monsoon prediction.

Keywords: Indian Himalaya, Scatterometer, Snow Melt/Freeze, AWiFS, Cryosphere

Procedia PDF Downloads 229
813 The Influence of Masculinity and Femininity on Lucid Dreaming and Psychosis Proneness

Authors: Anum Atiq, Haya Fatimah

Abstract:

Lucid dream is a dream where one is aware that one is dreaming, and they also might be able to influence their dreaming states. Logically, since lucidity cues towards high awareness, it should be negatively associated with proneness to psychosis. However, this association is scarcely studied. Furthermore, although gender differences and similarities in psychopathology have been thoroughly studied, there is room for research in the influence of masculinity and femininity, regardless of one’s sex, on proneness to psychosis. The aim of this study is twofold: 1) We investigated if dream lucidity was negatively associated with psychosis proneness; and 2) We explored the influence of masculinity and femininity on psychosis proneness, over and above the sex. Data were collected by convenience sampling from the undergraduate students enrolled at the University of Management and Technology, Lahore. The sample consisted of 53 students among the age range of 18-26 (men=24, women=29). Masculinity and femininity were measured using the masculinity and femininity subscales of the Personality Attributes Questionnaire. Dream lucidity was measured with The Lucidity and Consciousness in Dreams Scale; and the reality testing sub scale of The Inventory of Personality Organization was used to measure proneness to psychosis. Pearson correlation analysis revealed that psychosis proneness was significantly and negatively correlated with dream lucidity-insight and negative emotion in dreams, but not with other aspects of dream lucidity. Furthermore, masculinity, in both men and women, was positively related with lucid dreaming, and negatively with psychosis proneness. Following this, linear regression analysis showed that psychosis proneness was negatively predicted by masculinity even after controlling for gender. Lucid dreamer and masculinity both have characteristic of independence, emotional control and internal locus of control. Therefore, masculinity makes lucid dreaming less risk of psychosis in both genders.

Keywords: lucid dreaming, psychosis, gender, masculinity and femininity

Procedia PDF Downloads 189
812 Motion Effects of Arabic Typography on Screen-Based Media

Authors: Ibrahim Hassan

Abstract:

Motion typography is one of the most important types of visual communication based on display. Through the digital display media, we can control the text properties (size, direction, thickness, color, etc.). The use of motion typography in visual communication made it have several images. We need to adjust the terminology and clarify the different differences between them, so relying on the word motion typography -considered a general term- is not enough to separate the different communicative functions of the moving text. In this paper, we discuss the different effects of motion typography on Arabic writing and how we can achieve harmony between the movement and the letterform, and we will, during our experiments, present a new type of text movement.

Keywords: Arabic typography, motion typography, kinetic typography, fluid typography, temporal typography

Procedia PDF Downloads 128
811 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure

Authors: Tokuei Sako

Abstract:

Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.

Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity

Procedia PDF Downloads 490
810 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 114
809 Proposed Design of an Optimized Transient Cavity Picosecond Ultraviolet Laser

Authors: Marilou Cadatal-Raduban, Minh Hong Pham, Duong Van Pham, Tu Nguyen Xuan, Mui Viet Luong, Kohei Yamanoi, Toshihiko Shimizu, Nobuhiko Sarukura, Hung Dai Nguyen

Abstract:

There is a great deal of interest in developing all-solid-state tunable ultrashort pulsed lasers emitting in the ultraviolet (UV) region for applications such as micromachining, investigation of charge carrier relaxation in conductors, and probing of ultrafast chemical processes. However, direct short-pulse generation is not as straight forward in solid-state gain media as it is for near-IR tunable solid-state lasers such as Ti:sapphire due to the difficulty of obtaining continuous wave laser operation, which is required for Kerr lens mode-locking schemes utilizing spatial or temporal Kerr type nonlinearity. In this work, the transient cavity method, which was reported to generate ultrashort laser pulses in dye lasers, is extended to a solid-state gain medium. Ce:LiCAF was chosen among the rare-earth-doped fluoride laser crystals emitting in the UV region because of its broad tunability (from 280 to 325 nm) and enough bandwidth to generate 3-fs pulses, sufficiently large effective gain cross section (6.0 x10⁻¹⁸ cm²) favorable for oscillators, and a high saturation fluence (115 mJ/cm²). Numerical simulations are performed to investigate the spectro-temporal evolution of the broadband UV laser emission from Ce:LiCAF, represented as a system of two homogeneous broadened singlet states, by solving the rate equations extended to multiple wavelengths. The goal is to find the appropriate cavity length and Q-factor to achieve the optimal photon cavity decay time and pumping energy for resonator transients that will lead to ps UV laser emission from a Ce:LiCAF crystal pumped by the fourth harmonics (266nm) of a Nd:YAG laser. Results show that a single ps pulse can be generated from a 1-mm, 1 mol% Ce³⁺-doped LiCAF crystal using an output coupler with 10% reflectivity (low-Q) and an oscillator cavity that is 2-mm long (short cavity). This technique can be extended to other fluoride-based solid-state laser gain media.

Keywords: rare-earth-doped fluoride gain medium, transient cavity, ultrashort laser, ultraviolet laser

Procedia PDF Downloads 334
808 A Descriptive Study of Turkish Straits System on Dynamics of Environmental Factors Causing Maritime Accidents

Authors: Gizem Kodak, Alper Unal, Birsen Koldemir, Tayfun Acarer

Abstract:

Turkish Straits System which consists of Istanbul Strait (Bosphorus), Canakkale Strait (Dardanelles) and the Marmara Sea has a strategical location on international maritime as it is a unique waterway between the Mediterranean Sea, Black Sea and the Aegean Sea. Thus, this area has great importance since it is the only waterway between Black Sea countries and the rest of the World. Turkish Straits System has dangerous environmental factors hosts more vessel every day through developing World trade and this situation results in expanding accident risks day by day. Today, a lot of precautions have been taken to ensure safe navigation and to prevent maritime accidents, and international standards are followed to avoid maritime accidents. Despite this, the environmental factors that affect this area, trigger the maritime accidents and threaten the vessels with new accidents risks in different months with different hazards. This descriptive study consists of temporal and spatial analyses of environmental factors causing maritime accidents. This study also aims at contributing to safety navigation including monthly and regionally characteristics of variables. In this context, two different data sets are created consisting of environmental factors and accidents. This descriptive study on the accidents between 2001 and 2017 the mentioned region also studies the months and places of the accidents with environmental factor variables. Environmental factor variables are categorized as dynamic and static factors. Dynamic factors are appointed as meteorological and oceanographical while static factors are appointed as geological factors that threaten safety navigation with geometrical restricts. The variables that form dynamic factors are approached meteorological as wind direction, wind speed, wave altitude and visibility. The circulations and properties of the water mass on the system are studied as oceanographical properties. At the end of the study, the efficient meteorological and oceanographical parameters on the region are presented monthly and regionally. By this way, we acquired the monthly, seasonal and regional distributions of the accidents. Upon the analyses that are done; The Turkish Straits System that connects the Black Sea countries with the other countries and which is one of the most important parts of the world trade; is analyzed on temporal and spatial dimensions on the reasons of the accidents and have been presented as environmental factor dynamics causing maritime accidents.

Keywords: descriptive study, environmental factors, maritime accidents, statistics

Procedia PDF Downloads 171
807 A Method for Automated Planning of Fiber to the Home Access Network Infrastructures

Authors: Hammad Khalid

Abstract:

In this paper, a strategy for computerized arranging of Fiber to the Home (FTTH) get to systems is proposed. We presented an efficient methodology for arranging access organize framework. The GIS information and a lot of calculations were utilized to make the arranging procedure increasingly programmed. The technique clarifies various strides of the arranging process. Considering various situations, various designs can be produced by utilizing the technique. It was likewise conceivable to produce the designs in an extremely brief temporal contrast with the conventional arranging. A contextual investigation is considered to delineate the utilization and abilities of the arranging technique. The technique, be that as it may, doesn't completely robotize the arranging however, make the arranging procedure fundamentally quick. The outcomes and dialog are displayed and end is given at last.

Keywords: FTTH, GIS, robotize, plan

Procedia PDF Downloads 122
806 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 54
805 Compensatory Articulation of Pressure Consonants in Telugu Cleft Palate Speech: A Spectrographic Analysis

Authors: Indira Kothalanka

Abstract:

For individuals born with a cleft palate (CP), there is no separation between the nasal cavity and the oral cavity, due to which they cannot build up enough air pressure in the mouth for speech. Therefore, it is common for them to have speech problems. Common cleft type speech errors include abnormal articulation (compensatory or obligatory) and abnormal resonance (hyper, hypo and mixed nasality). These are generally resolved after palate repair. However, in some individuals, articulation problems do persist even after the palate repair. Such individuals develop variant articulations in an attempt to compensate for the inability to produce the target phonemes. A spectrographic analysis is used to investigate the compensatory articulatory behaviours of pressure consonants in the speech of 10 Telugu speaking individuals aged between 7-17 years with a history of cleft palate. Telugu is a Dravidian language which is spoken in Andhra Pradesh and Telangana states in India. It is a language with the third largest number of native speakers in India and the most spoken Dravidian language. The speech of the informants is analysed using single word list, sentences, passage and conversation. Spectrographic analysis is carried out using PRAAT, speech analysis software. The place and manner of articulation of consonant sounds is studied through spectrograms with the help of various acoustic cues. The types of compensatory articulation identified are glottal stops, palatal stops, uvular, velar stops and nasal fricatives which are non-native in Telugu.

Keywords: cleft palate, compensatory articulation, spectrographic analysis, PRAAT

Procedia PDF Downloads 420
804 K-Means Clustering-Based Infinite Feature Selection Method

Authors: Seyyedeh Faezeh Hassani Ziabari, Sadegh Eskandari, Maziar Salahi

Abstract:

Infinite Feature Selection (IFS) algorithm is an efficient feature selection algorithm that selects a subset of features of all sizes (including infinity). In this paper, we present an improved version of it, called clustering IFS (CIFS), by clustering the dataset in advance. To do so, first, we apply the K-means algorithm to cluster the dataset, then we apply IFS. In the CIFS method, the spatial and temporal complexities are reduced compared to the IFS method. Experimental results on 6 datasets show the superiority of CIFS compared to IFS in terms of accuracy, running time, and memory consumption.

Keywords: feature selection, infinite feature selection, clustering, graph

Procedia PDF Downloads 98
803 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects

Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet

Abstract:

New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.

Keywords: auditory feedback, gesture sonification, sound perception, virtual object

Procedia PDF Downloads 275