Search results for: strong electric field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11777

Search results for: strong electric field

11447 Study on the DC Linear Stepper Motor to Industrial Applications

Authors: Nolvi Francisco Baggio Filho, Roniele Belusso

Abstract:

Many industrial processes require a precise linear motion. Usually, this movement is achieved with the use of rotary motors combined with electrical control systems and mechanical systems such as gears, pulleys and bearings. Other types of devices are based on linear motors, where the linear motion is obtained directly. The Linear Stepper Motor (MLP) is an excellent solution for industrial applications that require precise positioning and high speed. This study presents an MLP formed by a linear structure and static ferromagnetic material, and a mover structure in which three coils are mounted. Mechanical suspension systems allow a linear movement between static and mover parts, maintaining a constant air gap. The operating principle is based on the tendency of alignment of magnetic flux through the path of least reluctance. The force proportional to the intensity of the electric current and the speed proportional to the frequency of the excitation coils. The study of this device is still based on the use of a numerical and experimental analysis to verify the relationship among electric current applied and planar force developed. In addition, the magnetic field in the air gap region is also monitored.

Keywords: linear stepper motor, planar traction force, reluctance magnetic, industry applications

Procedia PDF Downloads 475
11446 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 251
11445 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors

Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi

Abstract:

The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.

Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor

Procedia PDF Downloads 585
11444 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water

Authors: Zohreh Rashmei

Abstract:

Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.

Keywords: plasma, hydrogen peroxide, disinfection, E. coli

Procedia PDF Downloads 111
11443 High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves

Authors: Jiahui Song, Ravindra P. Joshi

Abstract:

The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions.

Keywords: action potential, electroporation, high-intensity, short-duration

Procedia PDF Downloads 241
11442 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 144
11441 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: disturbance automation, electric power grid, smart grid, smart switches

Procedia PDF Downloads 281
11440 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 320
11439 The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation

Authors: Judith Mwakalonge, Geophrey Mbatta, Cuthbert Ruseruka, Gurcan Comert, Saidi Siuhi

Abstract:

Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated.

Keywords: electric vehicles, EV charging stations, social economic factors, charging networks

Procedia PDF Downloads 57
11438 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 169
11437 Enabling Integrated Production of Electric Vehicles in Automotive Final Assembly: Realization of an Expert Study

Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Jan-Philip Ganser

Abstract:

In the past years, the automotive industry has changed significantly. Innovative mobility concepts have become more important, and electric vehicles see a chance of replacing vehicles with combustion engines in the long term. However, the coming years will be characterized by coexistence. In this context, there are two possible production scenarios: One the one hand, electric vehicles could be manufactured in bespoke assembly lines. Concerning the uncertainty regarding sales figures development, this alternative boasts a high investment risk. Therefore, an integrated assembly building upon existing structures also seems a feasible solution. This empirical study aims at validating hypotheses concerning theoretical and practical challenges of the integrated production in the final assembly. In order to take a test of approaches of the research by analyzing censored feedback of professionals, these hypotheses are validated in the framework of an expert study. For this purpose, hypotheses have been generated on the basis of a requirements analysis and a concept specification. Thereupon, a list of question has been implemented and deduced from the hypotheses to execute an online- and written-survey and interviews with professionals. The interpretation and evaluation of the findings includes an inter-component comparison for the electric drivetrain. Furthermore, key drivers for a sufficient integrated product and process design are presented.

Keywords: automotive industry, final assembly, integrated manufacturing, product and process development

Procedia PDF Downloads 310
11436 A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050

Authors: Sven Borén, Henrik Ny

Abstract:

Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.

Keywords: strategic, electric vehicles, sustainability, LCA

Procedia PDF Downloads 348
11435 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing

Authors: Ricardo Daziano

Abstract:

In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.

Keywords: discrete choice, electric taxis, ridehailing, semiparametrics

Procedia PDF Downloads 127
11434 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 77
11433 A Study on the Method of Accelerated Life Test to Electric Rotating System

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.

Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration

Procedia PDF Downloads 292
11432 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria

Authors: Segun Steven Bodunde

Abstract:

Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.

Keywords: mudlogging, chromatograph, drilling fluids, calcareous

Procedia PDF Downloads 119
11431 Study of Motion of Impurity Ions in Poly(Vinylidene Fluoride) from View Point of Microstructure of Polymer Solid

Authors: Yuichi Anada

Abstract:

Electrical properties of polymer solid is characterized by dielectric relaxation phenomenon. Complex permittivity shows a high dependence on frequency of external stimulation in the broad frequency range from 0.1mHz to 10GHz. The complex-permittivity dispersion gives us a lot of useful information about the molecular motion of polymers and the structure of polymer aggregates. However, the large dispersion of permittivity at low frequencies due to DC conduction of impurity ions often covers the dielectric relaxation in polymer solid. In experimental investigation, many researchers have tried to remove the DC conduction experimentally or analytically for a long time. On the other hand, our laboratory chose another way of research for this problem from the point of view of a reversal in thinking. The way of our research is to use the impurity ions in the DC conduction as a probe to detect the motion of polymer molecules and to investigate the structure of polymer aggregates. In addition to the complex permittivity, the electric modulus and the conductivity relaxation time are strong tools for investigating the ionic motion in DC conduction. In a non-crystalline part of melt-crystallized polymers, free spaces with inhomogeneous size exist between crystallites. As the impurity ions exist in the non-crystalline part and move through these inhomogeneous free spaces, the motion of ions reflects the microstructure of non-crystalline part. The ionic motion of impurity ions in poly(vinylidene fluoride) (PVDF) is investigated in this study. Frequency dependence of the loss permittivity of PVDF shows a characteristic of the direct current (DC) conduction below 1 kHz of frequency at 435 K. The electric modulus-frequency curve shows a characteristic of the dispersion with the single conductivity relaxation time. Namely, it is the Debye-type dispersion. The conductivity relaxation time analyzed from this curve is 0.00003 s at 435 K. From the plot of conductivity relaxation time of PVDF together with the other polymers against permittivity, it was found that there are two group of polymers; one of the group is characterized by small conductivity relaxation time and large permittivity, and another is characterized by large conductivity relaxation time and small permittivity.

Keywords: conductivity relaxation time, electric modulus, ionic motion, permittivity, poly(vinylidene fluoride), DC conduction

Procedia PDF Downloads 143
11430 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider a new real-life Heterogenous Electric Vehicle Routing Problem with Time Dependant Charging Costs and a Mixed Fleet (HEVRP-TDMF), in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time-dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with three different insertion strategies. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem

Procedia PDF Downloads 436
11429 Characteristics and Quality of Chilean Abalone Undergoing Different Drying Emerging Technologies

Authors: Mario Pérez-Won, Anais Palma-Acevedo, Luis González-Cavieres, Roberto Lemus-Mondaca, Gipsy Tabilo-Munizaga

Abstract:

The Chilean abalone (Concholepas Concholepas) is a gastropod mollusk; it has a high commercial value due to the qualities of its meat, especially hardness, as a critical acceptance parameter. However, its main problem is its short shelf-life which is usually extended using traditional technologies with high energy consumption. Therefore, applying different technologies for the pre-treatment and drying process is necessary. In this research, pulsed electric field (PEF) was used as a pre-treatment for vacuum microwave drying (VMD), freeze-drying (FD), and hot-air drying (HAD). Drying conditions and characteristics were set according to previous experiments. The Drying samples were analyzed in terms of physical quality (color, texture, microstructure, and rehydration capacity), protein quality (degree of hydrolysis and computer protein efficiency ratio), and energy parameters. Regarding quality, the treatment that obtained lower harness was PEF+FD (195 N ± 10), the lowest change of color was for treatment PEF+VMD (ΔE: 17 ± 1.5), and the best rehydration capacity was for treatment PEF+VMD (1.2 h for equilibrium). For protein quality, the highest Computer-Protein Efficiency Ratio was the sample 2.0 kV/ cm of PEF (index of 4.18 ± 0.26 at the end of the digestion). Moreover, about energetic consumption, results show that VMD decreases the drying process by 97% whether PEF was used or not. Consequently, it is possible to conclude that using PEF as a pre-treatment for VMD and FD treatments has advantages that must be used following the consumer’s needs or preferences.

Keywords: chilean abalone, freeze-drying, proteins, pulsed electric fields

Procedia PDF Downloads 82
11428 Influence of 50 Hz, 1m Tesla Electromagnetic Fields on Serum Male Sex Hormones of Male Rats

Authors: Randa M. Mostafa, Y. Moustafa

Abstract:

During our daily life, we are continuously exposed to the extremely low frequency electromagnetic fields (ELF-EMFs) generated by electric appliances. The possible relation between exposure to (ELF-MFs) and adverse health effects has attracted and passed through long debate sessions. Extremely low frequency is a term used to describe radiation frequencies below 300 Hertz (Hz).It is very important for public health because of the widespread use of electrical power at 50-60 Hz in most countries. This study set out to investigate the impact of chronic exposure of male rats to 50- Hz, 1 mTesla (ELF-EMF) of over periods of 1, 2, and 4 weeks on concentration of serum FSH, LH, and testosterone hormones. 60 male albino rats were divided into 6 groups and were continuously exposed to 50-Hz, 1 m Tesla (ELF-EMF) generated by magnetic field chamber for periods of 1, 2, and 4 weeks. For each experimental point, sham treated group was used as a control. Assay of serum testosterone LH, and FSHwere performed. Serum testosterone showed no significant changes. FSH showed significant increase than sham exposed group after 1 week of field exposure. LH showed significant increase than sham exposed group only after 4 weeks of field exposure. A future detailed molecular studies must be carried out to figure out and may be able to explain the possible interactions between ELF-EMF and hypothalamic-pituitary gonadal axis.

Keywords: extremely low frequency electromagnetic fields, testosterone, follicular stimulating hormone, LH

Procedia PDF Downloads 430
11427 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles

Authors: Mahmoud Said Jneid, Péter Harth

Abstract:

EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.

Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control

Procedia PDF Downloads 56
11426 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation

Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst

Abstract:

There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.

Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation

Procedia PDF Downloads 158
11425 Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal

Authors: Jiheon Park, Taekwang Kim, Kwang Ryel Ryu

Abstract:

Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity.

Keywords: AGV operation, automated container terminal, battery replacement, electric AGV, strategy optimization

Procedia PDF Downloads 352
11424 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance

Authors: Mulue Girmay Gebreslasie

Abstract:

Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.

Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology

Procedia PDF Downloads 58
11423 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque

Procedia PDF Downloads 451
11422 FC and ZFC Studies of Nickel Nano Ferrites and Ni Doped Lithium Nano Ferrites by Citrate-Gel Auto Combustion Method

Authors: D. Ravinder

Abstract:

Nickel ferrites and Ni doped Lithium nano ferrites [Li0.5Fe0.5]1-xNixFe2O4 with x= 0.8 and 1.0 synthesized by citrate-gel auto combustion method. The broad peaks in the X-ray diffraction pattern (XRD) indicate a crystalline behavior of the prepared samples. Low temperature magnetization studies i,e Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the investigated samples are measured by using vibrating sample magnetometer (VSM). The magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5–375 K were carried out.

Keywords: ferro-spinels, field cooled (FC), Zero Field Cooled (ZFC) and blocking temperature, superpara magnetism, drug delivery applications

Procedia PDF Downloads 526
11421 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum

Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu

Abstract:

Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.

Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet

Procedia PDF Downloads 174
11420 Enhancing Rural Agricultural Value Chains through Electric Mobility Services in Ethiopia

Authors: Clemens Pizzinini, Philipp Rosner, David Ziegler, Markus Lienkamp

Abstract:

Transportation is a constitutional part of most supply and value chains in modern economies. Smallholder farmers in rural Ethiopia face severe challenges along their supply and value chains. In particular, suitable, affordable, and available transport services are in high demand. To develop a context-specific technical solutions, a problem-to-solution methodology based on the interaction with technology is developed. With this approach, we fill the gap between proven transportation assessment frameworks and general user-centered techniques. Central to our approach is an electric test vehicle that is implemented in rural supply and value chains for research, development, and testing. Based on our objective and the derived methodological requirements, a set of existing methods is selected. Local partners are integrated into an organizational framework that executes major parts of this research endeavour in the Arsi Zone, Oromia Region, Ethiopia.

Keywords: agricultural value chain, participatory methods, agile methods, sub-Saharan Africa, Ethiopia, electric vehicle, transport service

Procedia PDF Downloads 42
11419 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 42
11418 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints

Authors: S. Alotaibi, S. Omer, Y. Su

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.

Keywords: electric vehicles, zero emission car, fuel economy, CO₂ footprint

Procedia PDF Downloads 116