Search results for: seismic retrofitting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 973

Search results for: seismic retrofitting

883 Assessment of the Response of Seismic Refraction Tomography and Resistivity Imaging to the Same Geologic Environment: A Case Study of Zaria Basement Complex in North Central Nigeria

Authors: Collins C. Chiemeke, I. B. Osazuwa, S. O. Ibe, G. N. Egwuonwu, C. D. Ani, E. C. Chii

Abstract:

The study area is Zaria, located in the basement complex of northern Nigeria. The rock type forming the major part of the Zaria batholith is granite. This research work was carried out to compare the responses of seismic refraction tomography and resistivity tomography in the same geologic environment and under the same conditions. Hence, the choice of the site that has a visible granitic outcrop that extends across a narrow stream channel and is flanked by unconsolidated overburden, a neutral profile that was covered by plain overburden and a site with thick lateritic cover became necessary. The results of the seismic and resistivity tomography models reveals that seismic velocity and resistivity does not always simultaneously increase with depth, but their responses in any geologic environment are determined by changes in the mechanical and chemical content of the rock types rather than depth.

Keywords: environment, resistivity, response, seismic, velocity

Procedia PDF Downloads 316
882 Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation

Authors: Swanand Patil, Pankaj Agarwal

Abstract:

In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation.

Keywords: earthquake resilient structures, lifeline buildings, retrofitting of structures, supplemental energy dissipation

Procedia PDF Downloads 322
881 Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material

Authors: HoYoung Son, DongHoon Shin, WooYoung Jung

Abstract:

This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years’ condition, the elastic modulus was simply reduced about one–tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 458
880 Urban Analysis of the Old City of Oran and Its Building after an Earthquake

Authors: A. Zatir, A. Mokhtari, A. Foufa, S. Zatir

Abstract:

The city of Oran, like any other region of northern Algeria, is subject to frequent seismic activity, the study presented in this work will be based on an analysis of urban and architectural context of the city of Oran before the date of the earthquake of 1790, and then try to deduce the differences between the old city before and after the earthquake. The analysis developed as a specific objective to tap into the seismic history of the city of Oran parallel to its urban history. The example of the citadel of Oran indicates that constructions presenting the site of the old citadel, may present elements of resistance for face to seismic effects. Removed in city observations of these structures, showed the ingenuity of the techniques used by the ancient builders, including the good performance of domes and arches in resistance to seismic forces.

Keywords: earthquake, citadel, performance, traditional techniques, constructions

Procedia PDF Downloads 274
879 Comparison of Seismic Response for Two RC Curved Bridges with Different Column Shapes

Authors: Nina N. Serdar, Jelena R. Pejović

Abstract:

This paper presents seismic risk assessment of two bridge structure, based on the probabilistic performance-based seismic assessment methodology. Both investigated bridges are tree span continuous RC curved bridges with the difference in column shapes. First bridge (type A) has a wall-type pier and second (type B) has a two-column bent with circular columns. Bridges are designed according to European standards: EN 1991-2, EN1992-1-1 and EN 1998-2. Aim of the performed analysis is to compare seismic behavior of these two structures and to detect the influence of column shapes on the seismic response. Seismic risk assessment is carried out by obtaining demand fragility curves. Non-linear model was constructed and time-history analysis was performed using thirty five pairs of horizontal ground motions selected to match site specific hazard. In performance based analysis, peak column drift ratio (CDR) was selected as engineering demand parameter (EDP). For seismic intensity measure (IM) spectral displacement was selected. Demand fragility curves that give probability of exceedance of certain value for chosen EDP were constructed and based on them conclusions were made.

Keywords: RC curved bridge, demand fragility curve, wall type column, nonlinear time-history analysis, circular column

Procedia PDF Downloads 304
878 Seismic Resistant Columns of Buildings against the Differential Settlement of the Foundation

Authors: Romaric Desbrousses, Lan Lin

Abstract:

The objective of this study is to determine how Canadian seismic design provisions affect the column axial load resistance of moment-resisting frame reinforced concrete buildings subjected to the differential settlement of their foundation. To do so, two four-storey buildings are designed in accordance with the seismic design provisions of the Canadian Concrete Design Standards. One building is located in Toronto, which is situated in a moderate seismic hazard zone in Canada, and the other in Vancouver, which is in Canada’s highest seismic hazard zone. A finite element model of each building is developed using SAP 2000. A 100 mm settlement is assigned to the base of the building’s center column. The axial load resistance of the column is represented by the demand capacity ratio. The analysis results show that settlement-induced tensile axial forces have a particularly detrimental effect on the conventional settling columns of the Toronto buildings which fail at a much smaller settlement that those in the Vancouver buildings. The results also demonstrate that particular care should be taken in the design of columns in short-span buildings.

Keywords: Columns, Demand, Foundation differential settlement, Seismic design, Non-linear analysis

Procedia PDF Downloads 104
877 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation

Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone

Abstract:

This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.

Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit

Procedia PDF Downloads 209
876 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee

Abstract:

Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.

Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander

Procedia PDF Downloads 119
875 Seismic Vulnerability Assessment of High-Rise Structures in Addis Ababa, Ethiopia: Implications for Urban Resilience Along the East African Rift Margin

Authors: Birhanu Abera Kibret

Abstract:

The abstract highlights findings from a seismicity study conducted in the Ethiopian Rift Valley and adjacent cities, including Semera, Adama, and Hawasa, located in Afar and the Main Ethiopian Rift system. The region experiences high seismicity, characterized by small to moderate earthquakes situated in the mid-to-upper crust. Additionally, the capital city of Ethiopia, Addis Ababa, situated in the rift margin, experiences seismic activity, with small to relatively moderate earthquakes observed to the east and southeast of the city, alongside the rift valley. These findings underscore the seismic vulnerability of the region, emphasizing the need for comprehensive seismic risk assessment and mitigation strategies to enhance resilience and preparedness.

Keywords: seismic hazard, seismicity, crustal structure, magmatic intrusion, partial meltung

Procedia PDF Downloads 19
874 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test

Procedia PDF Downloads 377
873 On the Seismic Response of Collided Structures

Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos

Abstract:

This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.

Keywords: nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions

Procedia PDF Downloads 568
872 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment

Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai

Abstract:

Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.

Keywords: computational methods, MATLAB, seismic hazard, seismic measurements

Procedia PDF Downloads 305
871 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure

Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing

Abstract:

Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.

Keywords: attribute index, classification method, earthquake damage picture, engineering structure

Procedia PDF Downloads 733
870 The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures

Authors: Yang Liu

Abstract:

Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well.

Keywords: reinforced concrete shear wall, seismic performance, high mode effect, nonlinear analysis

Procedia PDF Downloads 130
869 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia

Authors: Fathul Mubin, Budi E. Nurcahya

Abstract:

In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.

Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index

Procedia PDF Downloads 166
868 Calculation of Instrumental Results of the Tohoku Earthquake, Japan (Mw 9.0) on March 11, 2011 and Other Destructive Earthquakes during Seismic Hazard Assessment

Authors: J. K. Karapetyan

Abstract:

In this paper seismological-statistical analysis of actual instrumental data on the main tremor of the Great Japan earthquake 11.03.2011 is implemented for finding out the dependence between maximal values of peak ground accelerations (PGA) and epicentric distances. A number of peculiarities of manifestation of accelerations' maximum values at the interval of long epicentric distances are revealed which do not correspond with current scales of seismic intensity.

Keywords: earthquakes, instrumental records, seismic hazard, Japan

Procedia PDF Downloads 339
867 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences

Authors: Alisha Khanal, Gokhan Saygili

Abstract:

It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.

Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes

Procedia PDF Downloads 114
866 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures

Authors: Haleh Hamidpour

Abstract:

Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.

Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism

Procedia PDF Downloads 304
865 Study of Seismic Behavior of an Earth Dam with Sealing Walls: The Case of Kef Eddir’s Dam, Tipaza, Algeria

Authors: M. Boumaiza, S. Mohamadi, B. Moussai

Abstract:

In this article the study of the seismic response of an earth dam with sealing walls has been made by introducing the effect of the change of position and depth of the sealing wall and the effect of non-linear behavior of soil of the foundation by taking into account the variation of the viscous damping and shear modulus in each layer of soil on the seismic response of the dam. As a case study, we take the Algerian dam Kef-Eddir which lies in the far west of the territory of the Wilaya of Tipaza (wadi Eddamous), classified according to the RPA 2003 as a high seismicity zone (zone III). With a height of 71m above the foundation and a width of 478m. The seismic event applied to the rock, is the earthquake of Chenoua (29 October, 1989), with a magnitude Mw=6 that hit the region.

Keywords: earth dam, earthquake, sealing walls, viscous damping

Procedia PDF Downloads 578
864 Soil-Structure Interaction in Stiffness and Strength Degrading Systems

Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak

Abstract:

We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.

Keywords: inelastic, seismic, building, foundation, interaction

Procedia PDF Downloads 258
863 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability

Procedia PDF Downloads 280
862 Structural Behavior of Incomplete Box Girder Bridges Subjected to Unpredicted Loads

Authors: E. H. N. Gashti, J. Razzaghi, K. Kujala

Abstract:

In general, codes and regulations consider seismic loads only for completed structures of the bridges while, evaluation of incomplete structure of bridges, especially those constructed by free cantilever method, under these loads is also of great importance. Hence, this research tried to study the behavior of incomplete structure of common bridge type (box girder bridge), in construction phase under vertical seismic loads. Subsequently, the paper provided suitable guidelines and solutions to withstand this destructive phenomena. Research results proved that use of preventive methods can significantly reduce the stresses resulted from vertical seismic loads in box cross sections to an acceptable range recommended by design codes.

Keywords: box girder bridges, prestress loads, free cantilever method, seismic loads, construction phase

Procedia PDF Downloads 310
861 Resilient Analysis as an Alternative to Conventional Seismic Analysis Methods for the Maintenance of a Socioeconomical Functionality of Structures

Authors: Sara Muhammad Elqudah, Vigh László Gergely

Abstract:

Catastrophic events, such as earthquakes, are sudden, short, and devastating, threatening lives, demolishing futures, and causing huge economic losses. Current seismic analyses and design standards are based on life safety levels where only some residual strength and stiffness are left in the structure leaving it beyond economical repair. Consequently, it has become necessary to introduce and implement the concept of resilient design. Resilient design is about designing for ductility over time by resisting, absorbing, and recovering from the effects of a hazard in an appropriate and efficient time manner while maintaining the functionality of the structure in the aftermath of the incident. Resilient analysis is mainly based on the fragility, vulnerability, and functionality curves where eventually a resilience index is generated from these curves, and the higher this index is, the better is the performance of the structure. In this paper, seismic performances of a simple two story reinforced concrete building, located in a moderate seismic region, has been evaluated using the conventional seismic analyses methods, which are the linear static analysis, the response spectrum analysis, and the pushover analysis, and the generated results of these analyses methods are compared to those of the resilient analysis. Results highlight that the resilience analysis was the most convenient method in generating a more ductile and functional structure from a socio-economic perspective, in comparison to the standard seismic analysis methods.

Keywords: conventional analysis methods, functionality, resilient analysis, seismic performance

Procedia PDF Downloads 70
860 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 382
859 Seismic Activity and Groundwater Behavior at Kalabsha Area, Aswan, Egypt

Authors: S. M. Moustafa, A. Ezzat, Y. S. Taha, G. H. Hassib, S. Hamada

Abstract:

After the occurrence of 14, Nov, 1981 earthquake (M = 5.3), on Kalabska fault, south of Egypt, seismic stations distributed in and around the Kalabsha area, in order to monitoring, recording and studying the seismic activity in the area. In addition of that, from 1989 a number of piezometer wells drilled in the same area, distribed on at the both side of the active faults area and in different water bearing formations, in order to measuring the groundwater parameters (level, temperature, ph, and conductivity) to monitoring the relationship between those parameters and the seismic activity at Kalabsha area. The behavior of groundwater due to seismic activity over the world studied by several scientists i.e. H. Wakita (1979) on Izu-Oshima earthquake (M= 7.0) at Japan, M. E. Contadakis & G.asteriadis (1972), and Evans (1966), they found an anomalies on groundwater measurements prior, co, and post the occurrence of bigger earthquakes, referring to the probability of precursory evidence of impending earthquakes. In Kalabsha area south of Egypt, this study has been done using recorded seismic data, and the measurements of underground water parameters. same phenomena of anomalies founded on groundwater measurements pre, co. and post the occurrence of earthquakes with magnitude bigger than 3, and no systematic regularity exists for epicenter distance, duration of anomalies or time lag between anomalies appear and occurrence of events. Also the results found present strong relation between the groundwater in the upper unconfined aquifer Nubian Sandstone formation, and Kalabsha seismic activity, otherwise no relation between the seismic activities in the area with the deep groundwater in the lower confined aquifer Sandstone.

Keywords: seismicity, groundwater, Aswan, Egypt

Procedia PDF Downloads 349
858 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging

Authors: HoYoung Son, Ki Young Kim, Woo Young Jung

Abstract:

This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 404
857 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 224
856 Seismic Activity in the Lake Kivu Basin: Implication for Seismic Risk Management

Authors: Didier Birimwiragi Namogo

Abstract:

The Kivu Lake Basin is located in the Western Branch of the East African Rift. In this basin is located a multitude of active faults, on which earthquakes occur regularly. The most recent earthquakes date from 2008, 2015, 2016, 2017 and 2019. The cities of Bukabu and Goma in DR Congo and Giseyi in Rwanda are the most impacted by this intense seismic activity in the region. The magnitude of the strongest earthquakes in the region is 6.1. The 2008 earthquake was particularly destructive, killing several people in DR Congo and Rwanda. This work aims to complete the distribution of seismicity in the region, deduce areas of weakness and establish a hazard map that can assist in seismic risk management. Using the local seismic network of the Goma Volcano Observatory, the earthquakes were relocated, and their focus mechanism was studied. The results show that most of these earthquakes occur on active faults described by Villeneuve in 1938. The alignment of the earthquakes shows a pace that follows directly the directions of the faults described by this author. The study of the focus mechanism of these earthquakes, also shows that these are in particular normal faults whose stresses show an extensive activity. Such study can be used for the establishment of seismic risk management tools.

Keywords: earthquakes, hazard map, faults, focus mechanism

Procedia PDF Downloads 109
855 Hybrid Seismic Energy Dissipation Devices Made of Viscoelastic Pad and Steel Plate

Authors: Jinkoo Kim, Minsung Kim

Abstract:

This study develops a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A cyclic loading test is conducted on a test specimen to validate the seismic performance of the hybrid damper. Then a moment-framed model structure is designed without seismic load so that it is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis and the life cycle cost evaluation of the structure with and without the dampers. The analysis results show that the model structure has reduced probability of reaching damage states, especially the complete damage state, after seismic retrofit. The expected damage cost and consequently the life cycle cost of the retrofitted structure turn out to be significantly small compared with those of the original structure. Acknowledgement: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R & D program (N043100016).

Keywords: seismic retrofit, slit dampers, friction dampers, hybrid dampers

Procedia PDF Downloads 250
854 Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings

Authors: Putul Haldar, Yogendra Singh, D. K. Paul

Abstract:

Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings.

Keywords: URM infills, RC frame, seismic design codes, construction sequence of infilled frame

Procedia PDF Downloads 359